R-matrix electron-impact excitation data for the N-like iso-electronic sequence

Author:

Mao JunjieORCID,Badnell N. R.,Del Zanna G.ORCID

Abstract

Context. Spectral lines from N-like ions can be used to measure the temperature and density of various types of astrophysical plasmas. The atomic databases of astrophysical plasma modelling codes still have room for improvement in their electron-impact excitation data sets for N-like ions, especially for R-matrix data. This is particularly relevant for future observatories (e.g. Arcus), which will host high-resolution spectrometers. Aims. We aim to obtain level-resolved effective collision strengths for all transitions up to nl = 5d over a wide range of temperatures for N-like ions from O II to Zn XXIV (i.e. O+ to Zn23+) and to assess the accuracy of the present work. We also examine the impact of our new data on plasma diagnostics by modelling solar observations with CHIANTI. Methods. We carried out systematic R-matrix calculations for N-like ions, which included 725 fine-structure target levels in both the configuration interaction target and close-coupling collision expansions. The R-matrix intermediate coupling frame transformation method was used to calculate the collision strengths, while the AUTOSTRUCTURE code was used for the atomic structures. Results. We compare the present results for selected ions with those in archival databases and the literature. The comparison covers energy levels, oscillator strengths, and effective collision strengths. We show examples of improved plasma diagnostics when compared to CHIANTI models, which use only distorted wave data as well as some using previous R-matrix data. The electron-impact excitation data are archived according to the Atomic Data and Analysis Structure (ADAS) data class adf04 and will be available in OPEN-ADAS. The data can be used to improve the atomic databases for astrophysical plasma diagnostics.

Funder

STFC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3