Quantitative spectroscopy of B-type supergiants

Author:

Weßmayer D.ORCID,Przybilla N.ORCID,Butler K.

Abstract

Context. B-type supergiants are versatile tools to address a number of highly-relevant astrophysical topics, ranging from stellar atmospheres over stellar and galactic evolution to the characterisation of interstellar sightlines and to the cosmic distance scale. Aims. A hybrid non-local thermodynamic equilibrium (LTE) approach, involving line-blanketed model atmospheres computed under the assumption of LTE in combination with line formation calculations that account for deviations from LTE, is tested for quantitative analyses of B-type supergiants of mass up to about 30 M, characterising a sample of 14 Galactic objects in a comprehensive way. Methods. Hydrostatic plane-parallel atmospheric structures and synthetic spectra computed with Kurucz’s ATLAS 12 code together with the non-LTE line-formation codes DETAIL/SURFACE are compared to results from full non-LTE calculations with TLUSTY, and the effects of turbulent pressure on the models are investigated. High-resolution spectra at signal-to-noise ratio >130 are analysed for atmospheric parameters, using Stark-broadened hydrogen lines and multiple metal ionisation equilibria, and for elemental abundances. Fundamental stellar parameters are derived by considering stellar evolution tracks and Gaia early data release 3 (EDR3) parallaxes. Interstellar reddening and the reddening law along the sight lines towards the target stars are determined by matching model spectral energy distributions to observed ones. Results. Our hybrid non-LTE approach turns out to be equivalent to hydrostatic full non-LTE modelling for the deeper photospheric layers of the B-type supergiants under consideration, where most lines of the optical spectrum are formed. Turbulent pressure can become relevant for microturbulent velocities larger than 10 km s−1. The changes in the atmospheric density structure affect many diagnostic lines, implying systematic changes in atmospheric parameters, for instance an increase in surface gravities by up to 0.05 dex. A high precision and accuracy is achieved for all derived parameters by bringing multiple indicators to agreement simultaneously. Effective temperatures are determined to 2–3% uncertainty, surface gravities to better than 0.07 dex, masses to about 5%, radii to about 10%, luminosities to better than 25%, and spectroscopic distances to 10% uncertainty typically. Abundances for chemical species that are accessible from the optical spectra (He, C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe) are derived with uncertainties of 0.05–0.10 dex (1σ standard deviations). The observed spectra are reproduced well by the model spectra. The derived N/C versus N/O ratios tightly follow the predictions from Geneva stellar evolution models that account for rotation, and spectroscopic and Gaia EDR3 distances are closely matched. Finally, the methodology is tested for analyses of intermediate-resolution spectra of extragalactic B-type supergiants.

Funder

Austrian Science Fund FWF

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The blue supergiant Sher 25 revisited in the Gaia era;Astronomy & Astrophysics;2023-09

2. Clumping and X-rays in cooler B supergiant stars;Astronomy & Astrophysics;2023-09

3. The IACOB project;Astronomy & Astrophysics;2023-06

4. Quantitative spectroscopy of late O-type main-sequence stars with a hybrid non-LTE method;Astronomy & Astrophysics;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3