Detectability of biosignatures on LHS 1140 b

Author:

Wunderlich Fabian,Scheucher Markus,Grenfell John Lee,Schreier Franz,Sousa-Silva Clara,Godolt Mareike,Rauer Heike

Abstract

Context. Terrestrial extrasolar planets around low-mass stars are prime targets when searching for atmospheric biosignatures with current and near-future telescopes. The habitable-zone super-Earth LHS 1140 b could hold a hydrogen-dominated atmosphere, and is an excellent candidate for detecting atmospheric features. Aims. In this study we investigate how the instellation and planetary parameters influence the atmospheric climate, chemistry, and spectral appearance of LHS 1140 b. We study the detectability of selected molecules, in particular potential biosignatures, with the upcoming James Webb Space Telescope (JWST) and Extremely Large Telescope (ELT). Methods. In the first step we used the coupled climate–chemistry model 1D-TERRA to simulate a range of assumed atmospheric chemical compositions dominated by molecular hydrogen (H2) and carbon dioxide (CO2). In addition, we varied the concentrations of methane (CH4) by several orders of magnitude. In the second step we calculated transmission spectra of the simulated atmospheres and compared them to recent transit observations. Finally, we determined the observation time required to detect spectral bands with low-resolution spectroscopy using JWST, and the cross-correlation technique using ELT. Results. In H2-dominated and CH4-rich atmospheres oxygen (O2) has strong chemical sinks, leading to low concentrations of O2 and ozone (O3). The potential biosignatures ammonia (NH3), phosphine (PH3), chloromethane (CH3Cl), and nitrous oxide (N2O) are less sensitive to the concentration of H2, CO2, and CH4 in the atmosphere. In the simulated H2-dominated atmosphere the detection of these gases might be feasible within 20 to 100 observation hours with ELT or JWST when assuming weak extinction by hazes. Conclusions. If further observations of LHS 1140 b suggest a thin, clear, hydrogen-dominated atmosphere, the planet would be one of the best known targets to detect biosignature gases in the atmosphere of a habitable-zone rocky exoplanet with upcoming telescopes.

Funder

DFG

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3