Exploring the potential of Twinkle to unveil the nature of LTT 1445 Ab

Author:

Phillips Caprice L1ORCID,Wang Ji,Edwards Billy2,Martínez Romy Rodríguez1,Asnodkar Anusha Pai1,Gaudi B Scott1

Affiliation:

1. Department of Astronomy, The Ohio State University , Columbus, OH 43210 , USA

2. SRON, Netherlands Institute for Space Research , Niels Bohrweg 4, NL-2333 CA, Leiden , the Netherlands

Abstract

ABSTRACT We explore the prospects for Twinkle to determine the atmospheric composition of the nearby terrestrial-like planet LTT 1445 Ab, including the possibility of detecting the potential biosignature ammonia (NH3). At a distance of 6.9 pc, this system is the second closest known transiting system and will be observed through transmission spectroscopy with the upcoming Twinkle mission. Although LTT 1445 Ab has been suggested to be a candidate for a Hycean world, constraints on the interior composition based on its mass and radius suggests that the planet lacks a substantial water layer, and thus the proposed Hycean scenario is disfavoured. We use PETITRADTRANS and a Twinkle simulator to simulate transmission spectra for the more likely scenario of a cold Haber world for which NH3 is considered to be a biosignature. We study the detectability under different scenarios: varying hydrogen fraction, concentration of ammonia, and cloud coverage. We find that ammonia can be detected at an ∼3σ level for optimal (non-cloudy) conditions with 25 transits and a volume mixing ration of 4.0 ppm of NH3. We provide examples of retrieval analysis to constrain potential NH3 and H2O in the atmosphere. Our study illustrates the potential of Twinkle to characterize atmospheres of potentially habitable exoplanets.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3