Anisotropic turbulent transport with horizontal shear in stellar radiative zones

Author:

Prat V.ORCID,Mathis S.

Abstract

Context. Turbulent transport in stellar radiative zones is a key ingredient of stellar evolution theory, but the anisotropy of the transport due to the stable stratification and the rotation of these regions is poorly understood. The assumption of shellular rotation, which is a cornerstone of the so-called rotational mixing, relies on an efficient horizontal transport. However, this transport is included in many stellar evolution codes through phenomenological models that have never been tested. Aims. We investigate the impact of horizontal shear on the anisotropy of turbulent transport. Methods. We used a relaxation approximation (also known as τ approximation) to describe the anisotropising effect of stratification, rotation, and shear on a background turbulent flow by computing velocity correlations. Results. We obtain new theoretical scalings for velocity correlations that include the effect of horizontal shear. These scalings show an enhancement of turbulent motions, which would lead to a more efficient transport of chemicals and angular momentum, in better agreement with helio- and asteroseismic observations of rotation in the whole Hertzsprung-Russell diagram. Moreover, we propose a new choice for the non-linear time used in the relaxation approximation, which characterises the source of the turbulence. Conclusions. For the first time, we describe the effect of stratification, rotation, and vertical and horizontal shear on the anisotropy of turbulent transport in stellar radiative zones. The new prescriptions need to be implemented in stellar evolution calculations. To do so, it may be necessary to implement non-diffusive transport.

Funder

ERC

CNES

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference56 articles.

1. The Interior Angular Momentum of Core Hydrogen Burning Stars from Gravity-mode Oscillations

2. André Q., Mathis S., & Amard L. 2018, SF2A-2018: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, Di

3. André Q., Mathis S., & Amard L. 2019, https://doi.org/10.5281/zenodo.2545306

4. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes

5. Nearly uniform internal rotation of solar-like main-sequence stars revealed by space-based asteroseismology and spectroscopic measurements

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3