Chemical Mixing Induced by Internal Gravity Waves in Intermediate-mass Stars

Author:

Varghese A.ORCID,Ratnasingam R. P.ORCID,Vanon R.ORCID,Edelmann P. V. F.ORCID,Rogers T. M.ORCID

Abstract

Abstract Internal gravity waves can cause mixing in the radiative interiors of stars. We study this mixing by introducing tracer particles into 2D hydrodynamic simulations. Following the work of Rogers & McElwaine, we extend our study to different masses (3, 7, and 20 M ) and ages (ZAMS, midMS, and TAMS). The diffusion profiles of these models are influenced by various parameters such as the Brunt–Väisälä frequency, density, thermal damping, the geometric effect, and the frequencies of waves contributing to these mixing profiles. We find that the mixing profile changes dramatically across age. In younger stars, we noted that the diffusion coefficient increases toward the surface, whereas in older stars the initial increase in the diffusion profile is followed by a decreasing trend. We also find that mixing is stronger in more massive stars. Hence, future stellar evolution models should include this variation. In order to aid the inclusion of this mixing in 1D stellar evolution models, we determine the dominant waves contributing to these mixing profiles and present a prescription that can be included in 1D models.

Funder

UKRI ∣ Science and Technology Facilities Council

NASA ∣ Ames Research Center

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3