Linking planetary embryo formation to planetesimal formation

Author:

Voelkel Oliver,Deienno Rogerio,Kretke Katherine,Klahr Hubert

Abstract

Context. The growth-timescales of planetary embryos and their formation process are imperative for our understanding on how planetary systems form and develop. They determine the subsequent growth mechanisms during the life stages of a circumstellar disk. Aims. We quantify the timescales and spatial distribution of planetary embryos through collisional growth and fragmentation of dynamically forming 100 km sized planetesimals. In our study, the formation timescales of viscous disk evolution and planetesimal formation are linked to the formation of planetary embryos in the terrestrial planet zone. Methods. We connected a one-dimensional model for viscous gas evolution, dust and pebble dynamics, and pebble flux-regulated planetesimal formation to the N-body code LIPAD. Our framework enabled us to study the formation, growth, fragmentation, and evolution of planetesimals with an initial size of 100 km in diameter for the first million years of a viscous disk. Results. Our study shows the effect of the planetesimal surface density evolution on the preferential location and timescales of planetary embryo formation. Only the innermost embryos (<2 au) in our study form well within the lifetime of an active pebble flux for any disk studied. Higher planetesimal disk masses and steeper planetesimal surface density profiles result in more massive embryos within a larger area, rather than in a higher number of embryos. A one-dimensional analytically derived model for embryo formation based on the local planetesimal surface density evolution is presented. This model can reproduce the spatial distribution, formation rate, and total number of planetary embryos at a fraction of the computational cost of the N-body simulations. Conclusions. The formation of planetary embryos in the terrestrial planet zone occurs simultaneously with the formation of planetesimals. The local planetesimal surface density evolution and the orbital spacing of planetary embryos in the oligarchic regime are good constraints for modeling planetary embryo formation analytically. Our embryo formation model is a valuable asset in future studies of planet formation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3