Accretion and Uneven Depletion of the Main Asteroid Belt

Author:

Deienno RogerioORCID,Nesvorný DavidORCID,Clement Matthew S.ORCID,Bottke William F.ORCID,Izidoro AndréORCID,Walsh Kevin J.ORCID

Abstract

Abstract The main asteroid belt (MAB) is known to be primarily composed of objects from two distinct taxonomic classes, generically defined here as S- and C-complex. The former probably originated from the inner solar system (interior to Jupiter’s orbit), while the latter probably originated from the outer solar system. Following this definition, (4) Vesta, a V-type residing in the inner MAB (a < 2.5 au), is the sole D > 500 km object akin to the S-complex that potentially formed in situ. This provides a useful constraint on the number of D > 500 km bodies that could have formed, or grown, within the primordial MAB. In this work, we numerically simulate the accretion of objects in the MAB region during the time when gas in the protoplanetary disk still existed while assuming different MAB primordial masses. We then account for the depletion of that population happening after gas disk dispersal. In our analysis, we subdivided the MAB into five subregions and showed that the depletion factor varies throughout the MAB. This results in uneven radial- and size-dependent depletion of the MAB. We show that the MAB primordial mass has to be ≲2.14 × 10−3 M . Larger primordial masses would lead to the accretion of tens to thousands of S-complex objects with D > 500 km in the MAB. Such large objects would survive depletion even in the outer subregions (a > 2.5 au), thus being inconsistent with observations. Our results also indicate that S-complex objects with D > 200–300 km, including (4) Vesta, are likely to be terrestrial planetesimals implanted into the MAB rather than formed in situ.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3