Black hole parameter estimation with synthetic very long baseline interferometry data from the ground and from space

Author:

Roelofs FreekORCID,Fromm Christian M.,Mizuno YosukeORCID,Davelaar Jordy,Janssen MichaelORCID,Younsi ZiriORCID,Rezzolla Luciano,Falcke HeinoORCID

Abstract

Context. The Event Horizon Telescope (EHT) has imaged the shadow of the supermassive black hole in M 87. A library of general relativistic magnetohydrodynamics (GMRHD) models was fit to the observational data, providing constraints on black hole parameters. Aims. We investigate how much better future experiments can realistically constrain these parameters and test theories of gravity. Methods. We generated realistic synthetic 230 GHz data from representative input models taken from a GRMHD image library for M 87, using the 2017, 2021, and an expanded EHT array. The synthetic data were run through an automated data reduction pipeline used by the EHT. Additionally, we simulated observations at 230, 557, and 690 GHz with the Event Horizon Imager (EHI) Space VLBI concept. Using one of the EHT parameter estimation pipelines, we fit the GRMHD library images to the synthetic data and investigated how the black hole parameter estimations are affected by different arrays and repeated observations. Results. Repeated observations play an important role in constraining black hole and accretion parameters as the varying source structure is averaged out. A modest expansion of the EHT already leads to stronger parameter constraints in our simulations. High-frequency observations from space with the EHI rule out all but ∼15% of the GRMHD models in our library, strongly constraining the magnetic flux and black hole spin. The 1σ constraints on the black hole mass improve by a factor of five with repeated high-frequency space array observations as compared to observations with the current ground array. If the black hole spin, magnetization, and electron temperature distribution can be independently constrained, the shadow size for a given black hole mass can be tested to ∼0.5% with the EHI space array, which allows tests of deviations from general relativity. With such a measurement, high-precision tests of the Kerr metric become within reach from observations of the Galactic Center black hole Sagittarius A*.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference83 articles.

1. Simulations of M87 and Sgr A* imaging with the Millimetron Space Observatory on near-Earth orbits

2. Astropy: A community Python package for astronomy

3. Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions

4. Backes M., Müller C., & Conway J. E. 2016, Proceedings of the 4th Annual Conference on High Energy Astrophysics in Southern Africa (HEASA 2016), 25–26 August, 2016. South African Astronomical Observatory (SAAO), Cape Town, South Africa, 29

5. EHT-HOPS Pipeline for Millimeter VLBI Data Reduction

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3