Euclid preparation

Author:

,Desprez G.,Paltani S.,Coupon J.,Almosallam I.,Alvarez-Ayllon A.,Amaro V.,Brescia M.,Brodwin M.,Cavuoti S.,De Vicente-Albendea J.,Fotopoulou S.,Hatfield P. W.,Hartley W. G.,Ilbert O.,Jarvis M. J.,Longo G.,Rau M. M.,Saha R.,Speagle J. S.,Tramacere A.,Castellano M.,Dubath F.,Galametz A.,Kuemmel M.,Laigle C.,Merlin E.,Mohr J. J.,Pilo S.,Salvato M.,Andreon S.,Auricchio N.,Baccigalupi C.,Balaguera-Antolínez A.,Baldi M.,Bardelli S.,Bender R.,Biviano A.,Bodendorf C.,Bonino D.,Bozzo E.,Branchini E.,Brinchmann J.,Burigana C.,Cabanac R.,Camera S.,Capobianco V.,Cappi A.,Carbone C.,Carretero J.,Carvalho C. S.,Casas R.,Casas S.,Castander F. J.,Castignani G.,Cimatti A.,Cledassou R.,Colodro-Conde C.,Congedo G.,Conselice C. J.,Conversi L.,Copin Y.,Corcione L.,Courtois H. M.,Cuby J.-G.,Da Silva A.,de la Torre S.,Degaudenzi H.,Di Ferdinando D.,Douspis M.,Duncan C. A. J.,Dupac X.,Ealet A.,Fabbian G.,Fabricius M.,Farrens S.,Ferreira P. G.,Finelli F.,Fosalba P.,Fourmanoit N.,Frailis M.,Franceschi E.,Fumana M.,Galeotta S.,Garilli B.,Gillard W.,Gillis B.,Giocoli C.,Gozaliasl G.,Graciá-Carpio J.,Grupp F.,Guzzo L.,Hailey M.,Haugan S. V. H.,Holmes W.,Hormuth F.,Humphrey A.,Jahnke K.,Keihanen E.,Kermiche S.,Kilbinger M.,Kirkpatrick C. C.,Kitching T. D.,Kohley R.,Kubik B.,Kunz M.,Kurki-Suonio H.,Ligori S.,Lilje P. B.,Lloro I.,Maino D.,Maiorano E.,Marggraf O.,Markovic K.,Martinet N.,Marulli F.,Massey R.,Maturi M.,Mauri N.,Maurogordato S.,Medinaceli E.,Mei S.,Meneghetti M.,Benton Metcalf R.,Meylan G.,Moresco M.,Moscardini L.,Munari E.,Niemi S.,Padilla C.,Pasian F.,Patrizii L.,Pettorino V.,Pires S.,Polenta G.,Poncet M.,Popa L.,Potter D.,Pozzetti L.,Raison F.,Renzi A.,Rhodes J.,Riccio G.,Rossetti E.,Saglia R.,Sapone D.,Schneider P.,Scottez V.,Secroun A.,Serrano S.,Sirignano C.,Sirri G.,Stanco L.,Stern D.,Sureau F.,Tallada Crespí P.,Tavagnacco D.,Taylor A. N.,Tenti M.,Tereno I.,Toledo-Moreo R.,Torradeflot F.,Valenziano L.,Valiviita J.,Vassallo T.,Viel M.,Wang Y.,Welikala N.,Whittaker L.,Zacchei A.,Zamorani G.,Zoubian J.,Zucca E.

Abstract

Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo-z) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo-zs at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2 − 2.6 redshift range that the Euclid mission will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample, containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highly-accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, that is to say sources for which the photo-z deviates by more than 0.15(1 + z) from the spectroscopic-redshift (spec-z). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts, for example z >  1. However they generally perform better than template-fitting methods at low redshift (z <  0.7), indicating that template-fitting methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo-z precision and completeness of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid). Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3