KMOS study of the mass accretion rate from Class I to Class II in NGC 1333

Author:

Fiorellino EleonoraORCID,Manara Carlo F.ORCID,Nisini BrunellaORCID,Ramsay Suzanne,Antoniucci Simone,Giannini Teresa,Biazzo Katia,Alcalà Juan,Fedele Davide

Abstract

Context. The mass accretion rate (acc) is the fundamental parameter to understand the process of mass assembly that results in the formation of a low-mass star. This parameter has been largely studied in Classical T Tauri stars in star-forming regions with ages of ∼1 − 10 Myr. However, little is known about the accretion properties of young stellar objects (YSOs) in younger regions and early stages of star formation, such as in the Class 0/I phases. Aims. We present new near-infrared spectra of 17 Class I/Flat and 35 Class II sources located in the young (< 1 Myr) NGC 1333 cluster, acquired with the KMOS instrument at the Very Large Telescope. Our goal is to study whether the mass accretion rate evolves with age, as suggested by the widely adopted viscous evolution model, by comparing the properties of the NGC 1333 members with samples of older regions. Methods. For the Class II sources in our sample, we measured the stellar parameters (SpT, AV, and L) through a comparison of the IR spectra with a grid of non-accreting Class III stellar templates. We then computed the accretion luminosity by using the known correlation between Lacc and the luminosity of HI lines (Paβ and Brγ). For the Class I sample, where the presence of a large IR excess makes it impossible to use the same spectral typing method, we applied a procedure that allowed us to measure the stellar and accretion luminosity in a self-consistent way. Mass accretion rates acc were then measured once masses and radii were estimated adopting suitable evolutionary tracks. Results. The NGC 1333 Class II sources of our sample have Lacc ∼ 10−4 − 1 L and acc ∼ 10−11 − 10−7 M yr−1. We find a correlation between accretion and stellar luminosity in the form of log Lacc = (1.5 ± 0.2)log L + ( − 1.0 ± 0.1), and a correlation between the mass accretion rate and stellar mass in the form of log acc = (2.6 ± 0.9) log M + (−7.3 ± 0.7). Both correlations are compatible within the errors with the older Lupus star-forming region, while only the latter is consistent with results from Chamaeleon I. The Class I sample shows larger accretion luminosities (∼10−2 − 102L) and mass accretion rates (∼10−9 − 10−6M yr−1) with respect to the Class II stars of the same cloud. However, the derived mass accretion rates are not sufficiently high to build up the inferred stellar masses, assuming steady accretion during the Class I lifetime. This suggests that the sources are not in their main accretion phase and that most of their mass has already been accumulated during a previous stage and/or that the accretion is an episodic phenomenon. We show that some of the targets originally classified as Class I through Spitzer photometry are in fact evolved or low accreting objects. This evidence can have implications for the estimated protostellar phase lifetimes. Conclusions. The accretion rates of our sample are larger in more embedded and early stage YSOs. Further observations of larger samples in young star-forming regions are needed to determine if this is a general result. In addition, we highlight the importance of spectroscopic surveys of YSOs to confirm their classification and perform a more correct estimate of their lifetime.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3