HST spectra reveal accretion in MY Lupi

Author:

Alcalá J. M.,Manara C. F.ORCID,France K.,Schneider C. P.,Arulanantham N.ORCID,Miotello A.,Günther H. M.ORCID,Brown A.

Abstract

The mass accretion rate is a crucial parameter for the study of the evolution of accretion discs around young low-mass stellar and substellar objects (YSOs). We revisit the case of MY Lup, an object where VLT/X-shooter data suggested a negligible mass accretion rate, and show it to be accreting on a level similar to other Class II YSOs in Lupus based on Hubble Space Telescope (HST) observations. In our HST-Cosmic Origins Spectrograph (HST-COS) and -Space Telescope Imaging Spectrograph (HST-STIS) spectra, we find many emission lines, as well as substantial far-ultraviolet (FUV) continuum excess emission, which can be ascribed to active accretion. The total luminosity of the C IV λ1549 Å doublet is 4.1 × 10−4 L. Using scalings between accretion luminosity, Lacc, and C IV luminosity from the literature, we derive Lacc ~2 × 10−1 L, which is more than an order of magnitude higher than the upper limit estimated from the X-shooter observations. We discuss possible reasons for the X-shooter-HST discrepancy, the most plausible being that the low contrast between the continuum excess emission and the photospheric+chromospheric emission at optical wavelengths in MY Lup hampered detection of excess emission. The luminosity of the FUV continuum and C IV lines, strong H2 fluorescence, and a “1600 A Bump” place MY Lup in the class of accreting objects with gas-rich discs. So far, MY Lup is the only peculiar case in which a significant difference between the HST and X-shooter acc estimates exists that is not ascribable to variability. The mass accretion rate inferred from the revisited Lacc estimate is acc ~ 1(−0.5+1.5) × 10−8 M yr−1. This value is consistent with the typical value derived for accreting YSOs of similar mass in Lupus and points to less clearing of the inner disc than indicated by near- and mid-infrared observations. This is confirmed by Atacama Large Millimeter Array (ALMA) data, which show that the gaps and rings seen in the sub-millimetre are relatively shallow.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference88 articles.

1. X-shooter spectroscopy of young stellar objects

2. X-shooter spectroscopy of young stellar objects in Lupus

3. Alexander R. D., Pascucci I., Andrews S., Armitage P., & Cieza L. 2014, in Protostars and Planets VI, eds. Beuther H., Klessen R. S., Dullemond C. P., & Henning T. (Tucson, AZ: University of Arizona Press), 475

4. RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS

5. The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3