Properties of loss cone stars in a cosmological galaxy merger remnant

Author:

Avramov BranislavORCID,Berczik Peter,Meiron Yohai,Acharya Anshuman,Just Andreas

Abstract

Aims. We investigate the orbital and phase space properties of loss cone stars that interact strongly with a hard, high-redshift binary supermassive black hole (SMBH) system formed in a cosmological scenario. Methods. We use a novel hybrid integration approach that combines the direct N-body code φ-GRAPE with ETICS, a collisionless code that employs the self-consistent field method for force calculation. The hybrid approach shows considerable speed-up over direct summation for particle numbers > 106, while retaining accuracy of direct N-body for a subset of particles. During the SMBH binary evolution we monitor individual stellar interactions with the binary in order to identify stars that noticeably contribute to the SMBH binary hardening. Results. We successfully identify and analyze in detail the properties of stars that extract energy from the binary. We find that the summed energy changes seen in these stars match very well with the overall binary energy change, demonstrating that stellar interactions are the primary drivers of SMBH binary hardening in triaxial, gas-poor systems. We find that 76% of these stars originate from centrophilic orbits, only possible in a triaxial system. As a result, even the slight triaxiality of our system results in efficient refilling of the loss cone, avoiding the final parsec problem. We distinguish three different populations of interactions based on their apocenter. We find a clear prevalence of interactions co-rotating with the binary. Nevertheless, retrograde interactions are the most energetic, contributing only slightly less than the prograde population to the overall energy exchange. The most energetic interactions are also likely to result in a change of sign in the angular momentum of the star. We estimate the merger timescale of the binary to be ≈20 Myr, a value larger by a factor of two than the timescale reported in a previous study.

Funder

Volkswagen Foundation

National Science Foundation of China

University of Heidelberg

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational methods for collisional stellar systems;Living Reviews in Computational Astrophysics;2023-09-06

2. NGC 6240 supermassive black hole binary dynamical evolution based on Chandra data;Monthly Notices of the Royal Astronomical Society;2022-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3