Characterizing the dust content of disk substructures in TW Hydrae

Author:

Macías E.ORCID,Guerra-Alvarado O.ORCID,Carrasco-González C.ORCID,Ribas Á.ORCID,Espaillat C. C.ORCID,Huang J.ORCID,Andrews S. M.ORCID

Abstract

Context. A key piece of information to understand the origin and role of protoplanetary disk substructures is their dust content. In particular, disk substructures associated with gas pressure bumps can work as dust traps, accumulating grains and reaching the necessary conditions to trigger the streaming instability. Aims. In order to shed some light on the origin and role that disk substructures play in planet formation, we aim to characterize the dust content of substructures in the disk of TW Hya. Methods. We present Atacama Large Millimeter Array (ALMA) observations of TW Hya at 3.1 mm with ~50 milliarcsecond resolution. These new data were combined with archival high angular resolution ALMA observations at 0.87, 1.3, and 2.1 mm. We analyze these multiwavelength data to infer a disk radial profile of the dust surface density, maximum particle size, and slope of the particle size distribution. Results. Most previously known annular substructures in the disk of TW Hya are resolved at the four wavelengths. Inside the inner 3 au cavity, the 2.1 and 3.1 mm images show a compact source of free–free emission, likely associated with an ionized jet. Our multiwavelength analysis of the dust emission shows that the maximum particle size in the disk of TW Hya is >1 mm. The inner 20 au are completely optically thick at all four bands, which results in the data tracing different disk heights at different wavelengths. Coupled with the effects of dust settling, this prevents the derivation of accurate density and grain size estimates in these regions. At r > 20 au, we find evidence of the accumulation of large dust particles at the position of the bright rings, indicating that these are working as dust traps. The total dust mass in the disk is between 250 and 330 M, which represents a gas-to-dust mass ratio between 50 and 70. Our mass measurement is a factor of 4.5–5.9 higher than the mass that one would estimate using the typical assumptions of large demographic surveys. Conclusions. Our results indicate that the ring substructures in TW Hya are ideal locations to trigger the streaming instability and form new generations of planetesimals.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3