Uncertainties of the dust grain size in protoplanetary disks retrieved from millimeter continuum observations

Author:

Li DafaORCID,Liu YaoORCID,Wang Hongchi,Fang Min,Wang Lei

Abstract

Context. Investigating the dust grain size and its dependence on substructures in protoplanetary disks is a crucial step in understanding the initial process of planet formation. Spectral indices derived from millimeter observations are used as a common probe for grain size. Converting observed spectral indices into grain sizes is a complex task that involves solving the radiative transfer equation, taking into account the disk structure and dust properties. Aims. Under the assumption of vertically isothermal disks, the solution to the radiative transfer equation can be approximated with an analytic expression, with which the fitting procedure can be done very fast. Our work aims to investigate the applicability of this method to grain size retrieval. Methods. We ran reference radiative transfer models with known disk properties, and generated four synthetic images at wavelengths of 0.8, 1.3, 3, and 7.8 mm, representing high-resolution continuum observations. Rings and gaps were considered in the setup. We fit the synthetic images using the analytic solution to investigate the circumstances under which the input grain sizes can be recovered. Results. Fitting images at only two wavelengths is not sufficient to retrieve the grain size. Fitting three images improves the retrieval of grain size, but the dust surface density is still not well recovered. When taking all of the four images into account, degeneracies between different parameters are highly reduced, and consequently the best-fit grain sizes are consistent with the reference setup at almost all radii. We find that the inclination angle has a significant impact on the fitting results. For disks with low inclinations, the analytic approach works quite well. However, when the disk is tilted above ~60°, neither the grain size nor the dust surface density can be constrained, as the inclination effect will smooth out all substructures in the radial intensity profile of the disk.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3