Author:
Khoperskov Sergey,Mastrobuono-Battisti Alessandra,Di Matteo Paola,Haywood Misha
Abstract
We present the results of a self-consistent N-body simulation following the evolution of a primordial population of thick-disc globular clusters (GCs). We study how the internal properties of such clusters evolve under the action of mutual interactions, while they orbit a Milky Way-like galaxy. For the first time, through analytical and numerical considerations, we find that physical encounters between disc GCs are a crucial factor that contributed to the shape of the current properties of the Galactic GC system. Close passages or motion on similar orbits may indeed have a significant impact on the internal structure of clusters, producing multiple gravitationally bound sub-populations through the exchange of mass and even mergers. Our model produces two major mergers and a few small mass exchanges between pairs of GCs. Two of our GCs accrete stars from two companions, ending up with three internal sub-populations. We propose these early interactions and mergers between thick disc GCs with slightly different initial chemical compositions as a possible explanation for the spreads in metallicity observed in some of the massive Milky Ways GCs.
Funder
Agence Nationale de la Recherche
Russian Foundation for Basic Research
Deutsche Forschungsgemeinschaft
RFMEFI
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献