The role of radial migration in open cluster and field star populations with Gaia DR3

Author:

Viscasillas Vázquez C.ORCID,Magrini L.ORCID,Spina L.ORCID,Tautvaišienė G.ORCID,Van der Swaelmen M.ORCID,Randich S.,Sacco G. G.

Abstract

Context. The survival time of a star cluster depends on its total mass, density, and thus size, as well as on the environment in which it was born and in which lies. Its dynamical evolution is influenced by various factors such as gravitational effects of the Galactic bar, spiral structures, and molecular clouds. Overall, the factors that determine the longevity of a cluster are complex and not fully understood. Aims. This study aims to investigate whether open clusters and field stars respond differently to the perturbations that cause radial migration. In particular, we aim to understand the nature of the oldest surviving clusters. Methods. We compared the time evolution of the kinematic properties of two Gaia DR3 samples. The first sample is composed of ∼40 open clusters and the second one of ∼66 000 main sequence turn off field stars. Both of the samples are composed of stars selected with the same quality criterion, and they belong to the thin disc, are in a similar metallicity range, are located in the same Galactocentric region [7.5–9 kpc], and have ages greater than 1 Gyr. We performed a statistical analysis comparing the properties of the samples of the field stars and of the open clusters. Results. A qualitative comparison of kinematic and orbital properties revealed that clusters younger than 2–3 Gyr are more resistant to perturbations than field stars, and they move along quasi-circular orbits. Conversely, clusters older than approximately 3 Gyr have more eccentric and inclined orbits than isolated stars in the same age range. Such orbits lead the older clusters to reach higher elevations on the Galactic plane, maximising their probability to survive several more gigayears. A formal statistical analysis revealed that there are differences among the time evolution of most of the kinematic and orbital properties of the field stars and open clusters. However, the comparison between some properties (e.g., Vϕ and LZ) do not reach a sufficient statistical significance. Conclusions. Our results suggest that the oldest surviving clusters are usually more massive and move on orbits with a higher eccentricity. Although they are still reliable tracers of the Galaxy’s past composition, they do not reflect the composition of the place where they are currently found. Therefore, we cannot avoid considering kinematic properties when comparing data and models of chemical evolution and also taking into account the intrinsic differences between clusters and isolated stars. To validate the results, new studies that increase the sample of open clusters, especially at older ages, are needed.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3