A new dynamically self-consistent version of the Besançon Galaxy model

Author:

Bienaymé O.,Leca J.,Robin A. C.

Abstract

Context. Dynamically self-consistent galactic models are necessary for analysing and interpreting star counts, stellar density distributions, and stellar kinematics in order to understand the formation and the evolution of our Galaxy. Aims. We modify and improve the dynamical self-consistency of the Besançon Galaxy model in the case of a stationary and axisymmetric gravitational potential. Methods. Each stellar orbit is modelled by determining a Stäckel approximate integral of motion. Generalised Shu distribution functions (DFs) with three integrals of motion are used to model the stellar distribution functions. Results. This new version of the Besançon model is compared with the previous axisymmetric BGM2014 version and we find that the two versions have similar densities for each stellar component. The dynamically self-consistency is improved and can be tested by recovering the forces and the potential through the Jeans equations applied to each stellar distribution function. Forces are recovered with an accuracy better than one per cent over most of the volume of the Galaxy.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 12C/13C of Kepler giant stars: The missing piece of the mixing puzzle;Astronomy & Astrophysics;2024-04

2. The fragility of thin discs in galaxies – I. Building tailored N-body galaxy models;Monthly Notices of the Royal Astronomical Society;2023-02-07

3. Survey for Distant Solar Twins (SDST) – III. Identification of new solar twin and solar analogue stars;Monthly Notices of the Royal Astronomical Society;2023-02-06

4. Self-consistent models of our Galaxy;Monthly Notices of the Royal Astronomical Society;2023-01-12

5. A self-consistent dynamical model of the Milky Way disc adjusted to Gaia data;Astronomy & Astrophysics;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3