HD 38858: a solar-type star with an activity cycle of ∼10.8 yr

Author:

Flores M.ORCID,González J. F.,Jaque Arancibia M.,Saffe C.,Buccino A.,López F. M.,Ibañez Bustos R. V.,Miquelarena P.

Abstract

Context. The detection of chromospheric activity cycles in solar-analogue and twin stars can be used to place the solar cycle in a wider context. However, relatively few of these stars with activity cycles have been detected. It is well known that the cores of the Ca II H&K lines are modulated by stellar activity. The behaviour of the Balmer and other optical lines with stellar activity is not yet completely understood. Aims. We search for variations in the Ca II H&K, Balmer, and Fe II lines modulated by stellar activity. In particular, we apply a novel strategy to detect possible shape variations in the Hα line. Methods. We analysed activity signatures in HD 38858 using HARPS and CASLEO spectra obtained between 2003 and 2017. We calculated the Mount Wilson index (SMW), log(RHK), and the statistical moments of the Ca II H&K, Balmer, and other optical lines. We searched for periodicities using the generalized Lomb-Scargle periodogram. Results. We detect a long-term activity cycle of 10.8 yr in Ca II H&K and Hα in the solar-analogue star HD 38858. In contrast, this cycle is marginally detected in the Fe II lines. We also detect a noticeable variation in radial velocity that seems to be produced by stellar activity. Conclusions. HD 38858 is the second solar-analogue star where we find a clear activity cycle that is replicated in the Balmer lines. Spectral indexes based on the shape of Hα line seem to be more reliable than the fluxes in the same line for detecting activity variations. The cyclic modulation we detected gives place to a variation in radial velocity that previously has been associated with a super-Earth planet. Finally, due to the similarity of HD 38858 with the Sun, we recommend to continue monitoring this star.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3