Optimising the Hα index for the identification of activity signals in FGK stars

Author:

Gomes da Silva J.,Bensabat A.,Monteiro T.,Santos N. C.

Abstract

Context. The Ca II H&K and Hα lines are two of the most used activity diagnostics for detecting stellar activity signals in the optical regime, and for inferring possible false positives in exoplanet detection with the radial velocity method. The flux in the two lines is known to follow the solar activity cycle, and to correlate well with sunspot number and other activity diagnostics. However, for other stars, the flux in these lines is known to have a wide range of correlations, increasing the difficulty in the interpretation of the signals observed with the Hα line. Aims. In this work we investigate the effect of the Hα bandpass width on the correlation between the Ca II and Hα indices with the aim of improving the Hα index to better identify and model the signals coming from activity variability. Methods. We used a sample of 152 FGK dwarfs observed with HARPS for more than 13 yr with enough cadence to be able to detect rotational modulations and cycles in activity proxies. We calculated the Ca II and Hα activity indices using a range of bandwidths for Hα between 0.1 and 2.0 Å. We studied the correlation between the indices’ time series at long and short timescales, and analysed the impact of stellar parameters, activity level, and variability on the correlations. Results. The correlation between Ca II and Hα, both at short and long timespans, is maximised when using narrow Hα bandwidths, with a maximum at 0.6 Å. For some inactive stars, as the activity level increases, the flux in the Hα line core increases, while the flux in the line wings decreases as the line becomes shallower and broader. The balance between these fluxes can cause stars to show the negative correlations observed in the literature when using a wide bandwidth on Hα. These anti-correlations may become positive correlations if using the 0.6 Å bandwidth. We demonstrate that rotationally modulated signals observed in SCa II, which appear flat or noisy when using 1.6 Å on SHα, can become more evident if a 0.6 Å bandpass is used instead. Low activity variability appears to be a contributing factor for the cases of weak or no correlations. Conclusions. Calculating the Hα index using a bandpass of 0.6 Å maximises the correlation between Ca II and Hα, both at short and long timescales. On the other hand, the use of the broader 1.6 Å, generally used in exoplanet detection to identify stellar activity signals, degrades the signal by including the flux in the line wings. In view of these results, we strongly recommend the use of a 0.6 Å bandwidth when computing the Hα index for the identification of activity rotational modulation and magnetic cycle signals in solar-type stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3