Connecting substellar and stellar formation: the role of the host star’s metallicity

Author:

Maldonado J.ORCID,Villaver E.ORCID,Eiroa C.,Micela G.

Abstract

Context. Most of our current understanding of the planet formation mechanism is based on the planet metallicity correlation derived mostly from solar-type stars harbouring gas-giant planets. Aims. To achieve a more extensive grasp on the substellar formation process, we aim to analyse in terms of their metallicity a diverse sample of stars (in terms of mass and spectral type) covering the whole range of possible outcomes of the planet formation process (from planetesimals to brown dwarfs and low-mass binaries). Methods. Our methodology is based on the use of high-precision stellar parameters derived by our own group in previous works from high-resolution spectra by using the iron ionisation and equilibrium conditions. All values were derived in an homogeneous way, except for the M dwarfs where a methodology based on the use of pseudo equivalent widths of spectral features was used. Results. Our results show that as the mass of the substellar companion increases the metallicity of the host star tends to lower values. The same trend is maintained when analysing stars with low-mass stellar companions and a tendency towards a wide range of host star’s metallicity is found for systems with low-mass planets. We also confirm that more massive planets tend to orbit around more massive stars. Conclusions. The core-accretion formation mechanism for planet formation achieves its maximum efficiency for planets with masses in the range 0.2–2 MJup. Substellar objects with higher masses have higher probabilities of being formed as stars. Low-mass planets and planetesimals might be formed by core-accretion even around low-metallicity stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Star–Planet Composition Connection;Annual Review of Astronomy and Astrophysics;2024-09-13

2. Characterisation of the stellar activity of M dwarfs;Astronomy & Astrophysics;2024-04

3. Searching for Giant Exoplanets around M-dwarf Stars (GEMS) I: Survey Motivation;The Astronomical Journal;2024-03-15

4. Stellar black holes and compact stellar remnants;Black Holes in the Era of Gravitational-Wave Astronomy;2024

5. Estimations of Elemental Abundances during Solar Flares Observed in Soft X-Rays by the MinXSS-1 CubeSat Mission;The Astrophysical Journal;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3