Phase-space structure analysis of self-gravitating collisionless spherical systems

Author:

Halle A.,Colombi S.,Peirani S.

Abstract

In the mean field limit, isolated gravitational systems often evolve towards a steady state through a violent relaxation phase. One question is to understand the nature of this relaxation phase, in particular the role of radial instabilities in the establishment/destruction of the steady profile. Here, through a detailed phase-space analysis based both on a spherical Vlasov solver, a shell code, and a N-body code, we revisit the evolution of collisionless self-gravitating spherical systems with initial power-law density profiles ρ(r) ∝ rn, 0 ≤ n ≤ −1.5, and Gaussian velocity dispersion. Two sub-classes of models are considered, with initial virial ratios η = 0.5 (“warm”) and η = 0.1 (“cool”). Thanks to the numerical techniques used and the high resolution of the simulations, our numerical analyses are able, for the first time, to show the clear separation between two or three well-known dynamical phases: (i) the establishment of a spherical quasi-steady state through a violent relaxation phase during which the phase-space density displays a smooth spiral structure presenting a morphology consistent with predictions from self-similar dynamics, (ii) a quasi-steady-state phase during which radial instabilities can take place at small scales and destroy the spiral structure but do not change quantitatively the properties of the phase-space distribution at the coarse grained level, and (iii) relaxation to a non-spherical state due to radial orbit instabilities for n ≤ −1 in the cool case.

Funder

Agence Nationale de la Recherche

Yukawa Institute for Theoretical Physics, Kyoto University

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spherical accretion of collisional gas in modified gravity I: self-similar solutions and a new cosmological hydrodynamical code;Monthly Notices of the Royal Astronomical Society;2022-07-22

2. Large-scale dark matter simulations;Living Reviews in Computational Astrophysics;2022-02-11

3. Phase-space structure of protohalos: Vlasov versus particle-mesh;Astronomy & Astrophysics;2021-03

4. Phase-space structure of cold dark matter haloes inside splashback: multistream flows and self-similar solution;Monthly Notices of the Royal Astronomical Society;2020-02-14

5. Non-stationary Antonov self-gravitating layer: analytics and numerics;Monthly Notices of the Royal Astronomical Society;2019-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3