Phase-space structure of protohalos: Vlasov versus particle-mesh

Author:

Colombi S.

Abstract

The phase-space structure of primordial dark matter halos is revisited using cosmological simulations with three sine waves and cold dark matter (CDM) initial conditions. The simulations are performed with the tessellation based Vlasov solver ColDICE and a particle-mesh (PM) N-body code. The analyses include projected density, phase-space diagrams, radial density ρ(r), and pseudo-phase space density: Q(r) = ρ(r)/σv(r)3 with σv the local velocity dispersion. Particular attention is paid to force and mass resolution. Because the phase-space sheet complexity, estimated in terms of total volume and simplex (tetrahedron) count, increases very quickly, ColDICE can follow only the early violent relaxation phase of halo formation. During the violent relaxation phase, agreement between ColDICE and PM simulations having one particle per cell or more is excellent and halos have a power-law density profile, ρ(r) ∝ rα, α ∈ [1.5, 1.8]. This slope, measured prior to any merger, is slightly larger than in the literature. The phase-space diagrams evidence complex but coherent patterns with clear signatures of self-similarity in the sine wave simulations, while the CDM halos are somewhat scribbly. After additional mass resolution tests, the PM simulations are used to follow the next stages of evolution. The power law progressively breaks down with a convergence of the density profile to the well-known Navarro–Frenk–White universal attractor, irrespective of initial conditions, that is even in the three-sine-wave simulations. This demonstrates again that mergers do not represent a necessary condition for convergence to the dynamical attractor. Not surprisingly, the measured pseudo phase-space density is a power law Q(r) ∝ rαQ, with αQ close to the prediction of secondary spherical infall model, αQ ≃ 1.875. However this property is also verified during the early relaxation phase, which is non-trivial.

Funder

ANR

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3