CRIRES high-resolution infrared spectroscopy of the long-period Cepheid l Carinae

Author:

Nardetto N.ORCID,Poretti E.,Gallenne A.,Rainer M.,Anderson R. I.,Fouqué P.,Gieren W.,Graczyk D.,Kervella P.,Mathias P.,Mérand A.,Mourard D.,Neilson H.,Pietrzynski G.,Pilecki B.,Storm J.,Borgniet S.,Chiavassa A.,Hocdé V.,Trahin B.

Abstract

Context. The dynamical structure of the atmosphere of Cepheids has been well studied in the optical. Several authors have found very interesting spectral features in the J band, but little data have been secured beyond 1.6 μm. However, such observations can probe different radial velocities and line asymmetry regimes, and are able to provide crucial insights into stellar physics. Aims. Our goal was to investigate the infrared line-forming region in the K-band domain, and its impact on the projection factor and the k-term of Cepheids. Methods. We secured CRIRES observations for the long-period Cepheid l Car, with a focus on the unblended spectral line NaI 2208.969 nm. We measured the corresponding radial velocities (by using the first moment method) and the line asymmetries (by using the bi-Gaussian method). These quantities are compared to the HARPS visible spectra we previously obtained on l Car. Results. The optical and infrared radial velocity curves show the same amplitude (only about 3% of difference), with a slight radial velocity shift of about 0.5 ± 0.3 km s−1 between the two curves. Around the minimum radius (phase ≃ 0.9) the visible radial velocity curve is found in advance compared to the infrared one (phase lag), which is consistent with an infrared line forming higher in the atmosphere (compared to the visible line) and with a compression wave moving from the bottom to the top of the atmosphere during maximum outward velocity. The asymmetry of the K-band line is also found to be significantly different from that of the optical line.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3