Consistent radial velocities of classical Cepheids from the cross-correlation technique

Author:

Borgniet S.ORCID,Kervella P.,Nardetto N.,Gallenne A.,Mérand A.,Anderson R. I.,Aufdenberg J.,Breuval L.,Gieren W.,Hocdé V.,Javanmardi B.,Lagadec E.,Pietrzyński G.,Trahin B.

Abstract

Context. Accurate radial velocities (vrad) of Cepheids are mandatory within the context of Cepheid distance measurements using the Baade-Wesselink technique. The most common vrad derivation method consists in cross-correlating the observed stellar spectra with a binary template and measuring a velocity on the resulting mean profile. Nevertheless, for Cepheids and other pulsating stars, the spectral lines selected within the template as well as the way of fitting the cross-correlation function (CCF) have a direct and significant impact on the measured vrad. Aims. Our first aim is to detail the steps to compute consistent CCFs and vrad of Cepheids. Next, this study aims at characterising the impact of Cepheid spectral properties and vrad computation methods on the resulting line profiles and vrad time series. Methods. We collected more than 3900 high-resolution spectra from seven different spectrographs of 64 Classical Milky Way (MW) Cepheids. These spectra were normalised and standardised using a single custom-made process on pre-defined wavelength ranges. We built six tailored correlation templates selecting unblended spectral lines of different depths based on a synthetic Cepheid spectrum, on three different wavelength ranges from 3900 to 8000 Å. Each observed spectrum was cross-correlated with these templates to build the corresponding CCFs, adopted as the proxy for the spectrum mean line profile. We derived a set of line profile observables as well as three different vrad measurements from each CCF and two custom proxies for the CCF quality and amount of signal. Results. This study presents a large catalogue of consistent Cepheid CCFs and vrad time series. It confirms that each step of the process has a significant impact on the deduced vrad: the wavelength, the template line depth and width, and the vrad computation method. The way towards more robust Cepheid vrad time series seems to go through steps that minimise the asymmetry of the line profile and its impact on the vrad. Centroid or first-moment vrad, that exhibit slightly smaller amplitudes but significantly smaller scatter than Gaussian or biGaussian vrad, should therefore be favoured. Stronger or deeper spectral lines also tend to be less asymmetric and lead to more robust vrad than weaker lines.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference81 articles.

1. Tuning in on Cepheids: Radial velocity amplitude modulations

2. Discovery of cycle-to-cycle modulated spectral line variability and velocity gradients in long-period Cepheids

3. Anderson R. I. 2018, in The RR Lyrae 2017 Conference. Revival of the Classical Pulsators: from Galactic Structure to Stellar Interior Diagnostics, eds. Smolec R., Kinemuchi K., & Anderson R. I. (Poland: Polish Astronomical Society), 6, 193

4. Probing Polaris’ puzzling radial velocity signals

5. REVEALING δ CEPHEI’S SECRET COMPANION AND INTRIGUING PAST

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3