Multi-line Herschel/HIFI observations of water reveal infall motions and chemical segregation around high-mass protostars

Author:

van der Tak F. F. S.,Shipman R. F.,Jacq T.,Herpin F.,Braine J.,Wyrowski F.

Abstract

Context. The physical conditions during high-mass star formation are poorly understood. Outflow and infall motions have been detected around massive protostellar objects, but their dependence on mass, luminosity, and age is unclear. In addition, physical conditions and molecular abundances are often estimated using simple assumptions such as spherical shape and chemical homogeneity, which may limit the accuracy of the results. Aims. We aim to characterize the dust and gas distribution and kinematics of the envelopes of high-mass protostars. In particular, we search for infall motions, abundance variations, and deviations from spherical symmetry, using Herschel data from the WISH program. Methods. We used HIFI maps of the 987 GHz H2O 202–111 emission to measure the sizes and shapes of 19 high-mass protostellar envelopes. To identify infall, we used HIFI spectra of the optically thin C18O 9–8 and H218O 111–000 lines. The high-J C18O line traces the warm central material and redshifted H218O 111–000 absorption indicates material falling onto the warm core. We probe small-scale chemical differentiation by comparing H2O 752 and 987 GHz spectra with those of H218O. Results. Our measured radii of the central part of the H2O 202–111 emission are 30–40% larger than the predictions from spherical envelope models, and axis ratios are <2, which we consider good agreement. For 11 of the 19 sources, we find a significant redshift of the H218O 111–000 line relative to C18O 9–8. The inferred infall velocities are 0.6–3.2 km s−1, and estimated mass inflow rates range from 7 × 10−5 to 2 × 10−2 M yr−1. The highest mass inflow rates seem to occur toward the sources with the highest masses, and possibly the youngest ages. The other sources show either expanding motions or H218O lines in emission. The H218O 111–000 line profiles are remarkably similar to the differences between the H2O 202–111 and 211–202 profiles, suggesting that the H218O line and the H2O 202–111 absorption originate just inside the radius where water evaporates from grains, typically 1000–5000 au from the center. In some sources, the H218O line is detectable in the outflow, where no C18O emission is seen. Conclusions. Together, the H218O absorption and C18O emission profiles show that the water abundance around high-mass protostars has at least three levels: low in the cool outer envelope, high within the 100 K radius, and very high in the outflowing gas. Thus, despite the small regions, the combination of lines presented in this work reveals systematic inflows and chemical information about the outflows.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3