Absolute calibration of the polarisation angle for future CMB B-mode experiments from current and future measurements of the Crab nebula

Author:

Aumont J.ORCID,Macías-Pérez J. F.,Ritacco A.,Ponthieu N.,Mangilli A.

Abstract

A tremendous international effort is currently dedicated to observing the so-called primordial B modes of the cosmic microwave background (CMB) polarisation. If measured, this faint signal, caused by the primordial gravitational wave background, would be evidence of the inflation epoch and quantify its energy scale, providing a rigorous test of fundamental physics far beyond the reach of accelerators. At the unprecedented sensitivity level that the new generation of CMB experiments aims to reach, every uncontrolled instrumental systematic effect will potentially result in an analysis bias that is larger than the much sought-after CMB B-mode signal. The absolute calibration of the polarisation angle is particularly important in this context because any associated error will end up in leakage from the much larger E modes into B modes. The Crab nebula (Tau A), with its bright microwave synchrotron emission, is one of the few objects in the sky that can be used as absolute polarisation calibrators. In this paper we review the currently best constraints on its polarisation angle from 23 to 353 GHz at typical angular scales for CMB observations from WMAP, XPOL, Planck, and NIKA data. These polarisation angle measurements are compatible with a constant angle of −88.26° ±0.27° (assuming that systematic errors are independent between frequencies and that the experiments fully capture the extent of the Crab nebula). We study the uncertainty on this mean angle under different considerations for combinations of the individual measurement errors. For each of the cases, we study the potential effect on the CMB B-mode spectrum and on the recovered r parameter through a likelihood analysis. We find that current constraints on the Crab polarisation angle, assuming it is constant through microwave frequencies, allow us to calibrate experiments with an accuracy enabling the measurement of r ∼ 0.01. On the other hand, even under the most optimistic assumptions, current constraints will lead to an important limitation for the detection of r ∼ 10−3. New realistic measurement of the Crab nebula can change this situation by strengthening the assumption of the consistency across microwave frequencies and reducing the combined error.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference50 articles.

1. Abazajian K. N., Adshead P., Ahmed Z., et al. 2016, ArXiv e-prints [arXiv:1610.02743]

2. Search for gravitational waves in the CMB after WMAP3: Foreground confusion and the optimal frequency coverage for foreground minimization

3. Arnold K., Stebor N., Ade P. A. R., et al. 2014, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Proc. SPIE, 9153, 91531F

4. Measurement of the Crab nebula polarization at 90 GHz as a calibrator for CMB experiments

5. Aumont J., Banfi S., Battaglia P., et al. 2016, ArXiv e-prints [arXiv:1609.04372]

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3