Sensitivity kernels for time-distance helioseismology

Author:

Fournier Damien,Hanson Chris S.,Gizon Laurent,Barucq Hélène

Abstract

Context. The interpretation of helioseismic measurements, such as wave travel-time, is based on the computation of kernels that give the sensitivity of the measurements to localized changes in the solar interior. These kernels are computed using the ray or the Born approximation. The Born approximation is preferable as it takes finite-wavelength effects into account, although it can be computationally expensive. Aims. We propose a fast algorithm to compute travel-time sensitivity kernels under the assumption that the background solar medium is spherically symmetric. Methods. Kernels are typically expressed as products of Green’s functions that depend upon depth, latitude, and longitude. Here, we compute the spherical harmonic decomposition of the kernels and show that the integrals in latitude and longitude can be performed analytically. In particular, the integrals of the product of three associated Legendre polynomials can be computed. Results. The computations are fast and accurate and only require the knowledge of the Green’s function where the source is at the pole. The computation time is reduced by two orders of magnitude compared to other recent computational frameworks. Conclusions. This new method allows flexible and computationally efficient calculations of a large number of kernels, required in addressing key helioseismic problems. For example, the computation of all the kernels required for meridional flow inversion takes less than two hours on 100 cores.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference20 articles.

1. Sensitivity of Acoustic Wave Travel Times to Sound‐Speed Perturbations in the Solar Interior

2. SENSITIVITY KERNELS FOR FLOWS IN TIME–DISTANCE HELIOSEISMOLOGY: EXTENSION TO SPHERICAL GEOMETRY

3. Interpretation of Helioseismic Travel Times

4. Chabassier J., & Duruflé M. 2016, High Order Finite Element Method for Solving Convected Helmholtz Equation in Radial and Axisymmetric Domains. Application to Helioseismology, INRIA, Research Report RR- 8893

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3