Abstract
Abstract
We have carried out inversions of travel times as measured by Gizon et al. to infer the internal profile of the solar meridional circulation (MC). A linear inverse problem has been solved by the regularized least-squares method with a constraint that the angular momentum (AM) transport by MC should be equatorward (HK21-type constraint). Our motivation for using this constraint is based on the result by Hotta & Kusano (hereafter HK21), where the solar equator-fast rotation was reproduced successfully without any manipulation. The inversion result indicates that the MC profile is a double-cell structure if the so-called HK21 regime, in which AM transported by MC sustains the equator-fast rotation, correctly describes the physics inside the solar convective zone. The sum of the squared residuals computed with the inferred double-cell MC profile is comparable to that computed with the single-cell MC profile obtained when we exclude the HK21-type constraint, showing that both profiles can explain the data more or less at the same level. However, we also find that adding the HK21-type constraint degrades the resolution of the averaging kernels. Although it is difficult for us to determine the large-scale morphology of the solar MC at the moment, our attempt highlights the relevance of investigating the solar MC profile from both theoretical and observational perspectives.
Funder
MEXT ∣ Japan Society for the Promotion of Science
Publisher
American Astronomical Society