An efficient code to solve the Kepler equation

Author:

Raposo-Pulido V.ORCID,Peláez J.

Abstract

Context. This paper introduces a new approach for solving the Kepler equation for hyperbolic orbits. We provide here the Hyperbolic Kepler Equation–Space Dynamics Group (HKE–SDG), a code to solve the equation. Methods. Instead of looking for new algorithms, in this paper we have tried to substantially improve well-known classic schemes based on the excellent properties of the Newton–Raphson iterative methods. The key point is the seed from which the iteration of the Newton–Raphson methods begin. If this initial seed is close to the solution sought, the Newton–Raphson methods exhibit an excellent behavior. For each one of the resulting intervals of the discretized domain of the hyperbolic anomaly a fifth degree interpolating polynomial is introduced, with the exception of the last one where an asymptotic expansion is defined. This way the accuracy of initial seed is optimized. The polynomials have six coefficients which are obtained by imposing six conditions at both ends of the corresponding interval: the polynomial and the real function to be approximated have equal values at each of the two ends of the interval and identical relations are imposed for the two first derivatives. A different approach is used in the singular corner of the Kepler equation – |M| < 0.15 and 1 < e <  1.25 – where an asymptotic expansion is developed. Results. In all simulations carried out to check the algorithm, the seed generated leads to reach machine error accuracy with a maximum of three iterations (∼99.8% of cases with one or two iterations) when using different Newton–Raphson methods in double and quadruple precision. The final algorithm is very reliable and slightly faster in double precision (∼0.3 s). The numerical results confirm the use of only one asymptotic expansion in the whole domain of the singular corner as well as the reliability and stability of the HKE–SDG. In double and quadruple precision it provides the most precise solution compared with other methods.

Funder

Spanish Research Agency of Ministry of Economy, Industry and Competitiveness

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natal Kicks from the Galactic Center and Implications on Their Environment and for the Nancy Grace Roman Space Telescope;The Astrophysical Journal;2024-08-01

2. On the integral solution of hyperbolic Kepler’s equation;Celestial Mechanics and Dynamical Astronomy;2024-03-28

3. A new method for solving the hyperbolic Kepler equation;Applied Mathematical Modelling;2024-03

4. Kepler equation solution without transcendental functions or lookup tables;Celestial Mechanics and Dynamical Astronomy;2023-12-18

5. Machine learning-based solution of Kepler’s equation;Third International Conference on Computer Science and Communication Technology (ICCSCT 2022);2022-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3