On the integral solution of hyperbolic Kepler’s equation

Author:

Calvo M.,Elipe A.,Rández L.

Abstract

AbstractIn a recent paper of Philcox, Goodman and Slepian, the solution of the elliptic Kepler’s equation is given as a quotient of two contour integrals along a Jordan curve that contains in its interior the unique real solution of the elliptic Kepler’s equation and does not include other complex zeroes. In this paper, we show that a similar explicit integral solution can be given for the hyperbolic Kepler’s equation. With this purpose, we carry out a study of the complex zeros of the hyperbolic Kepler’s equation in order to define suitable Jordan contours in the integrals. Even more, we show that appropriate elliptic Jordan contours can be defined for such integrals, which reduces the computing time. Moreover, using the ideas behind the fast Fourier transform (FFT) algorithm, these integrals can be approximated by the composite trapezoidal rule which gives an algorithm with spectral convergence as a function of the number of nodes. The results of some numerical experiments are presented to show that this implementation is a reliable and very accurate algorithm for solving the hyperbolic Kepler’s equation.

Funder

Agencia Estatal de Investigación

Gobierno de Aragón

European Social Fund

Universidad de Zaragoza

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3