Abstract
Asteroseismology provides global stellar parameters such as masses, radii, or surface gravities using mean global seismic parameters and effective temperature for thousands of low-mass stars (0.8 M⊙ < M < 3 M⊙). This methodology has been successfully applied to stars in which acoustic modes excited by turbulent convection are measured. Other methods such as the Flicker technique can also be used to determine stellar surface gravities, but only works for log g above 2.5 dex. In this work, we present a new metric called FliPer (Flicker in spectral power density, in opposition to the standard Flicker measurement which is computed in the time domain); it is able to extend the range for which reliable surface gravities can be obtained (0.1 < log g < 4.6 dex) without performing any seismic analysis for stars brighter than Kp < 14. FliPer takes into account the average variability of a star measured in the power density spectrum in a given range of frequencies. However, FliPer values calculated on several ranges of frequency are required to better characterize a star. Using a large set of asteroseismic targets it is possible to calibrate the behavior of surface gravity with FliPer through machine learning. This calibration made with a random forest regressor covers a wide range of surface gravities from main-sequence stars to subgiants and red giants, with very small uncertainties from 0.04 to 0.1 dex. FliPer values can be inserted in automatic global seismic pipelines to either give an estimation of the stellar surface gravity or to assess the quality of the seismic results by detecting any outliers in the obtained νmax values. FliPer also constrains the surface gravities of main-sequence dwarfs using only long-cadence data for which the Nyquist frequency is too low to measure the acoustic-mode properties.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献