A simple method to measure νmax for asteroseismology: application to 16 000 oscillating Kepler red giants

Author:

Sreenivas K R1ORCID,Bedding Timothy R1ORCID,Li (李亚光) Yaguang12ORCID,Huber Daniel12,Crawford Courtney L1ORCID,Stello Dennis3ORCID,Yu Jie4

Affiliation:

1. Sydney Institute for Astronomy, School of Physics, University of Sydney , Sydney, NSW 2006 , Australia

2. Institute for Astronomy, University of Hawai‘i , 2680 Woodlawn Drive, Honolulu, HI 96822 , USA

3. School of Physics, University of New South Wales , Sydney, NSW 2052 , Australia

4. Max-Planck-Institut für Sonnensystemforschung , Justus-von-Liebig-Weg 3, D-37077 Göttingen , Germany

Abstract

ABSTRACT The importance of νmax (the frequency of maximum oscillation power) for asteroseismology has been demonstrated widely in the previous decade, especially for red giants. With the large amount of photometric data from CoRoT (Convection, Rotation, and planetary Transits), Kepler, and Transiting Exoplanet Survey Satellite, several automated algorithms to retrieve νmax values have been introduced. Most of these algorithms correct the granulation background in the power spectrum by fitting a model and subtracting it before measuring νmax. We have developed a method that does not require fitting to the granulation background. Instead, we simply divide the power spectrum by a function of the form $\rm \nu ^{-2}$, to remove the slope due to granulation background, and then smooth to measure νmax. This method is fast and simple and avoids degeneracies associated with fitting. The method is able to measure oscillations in 99.9 per cent of previously studied Kepler red giants, with a systematic offset of 1.5 per cent in νmax values that we are able to calibrate. On comparing the seismic radii from this work with Gaia, we see similar trends to those observed in previous studies. Additionally, our values of width of the power envelope can clearly identify the dipole mode suppressed stars as a distinct population, hence as a way to detect them. We also applied our method to stars with low νmax (0.19–18.35 µHz) and found that it works well to correctly identify the oscillations.

Funder

Australian Research Council

Alfred P. Sloan Foundation

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asteroseismology of the young open cluster NGC 2516;Astronomy & Astrophysics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3