Multiply imaged time-varying sources behind galaxy clusters

Author:

Wagner JennyORCID,Liesenborgs Jori,Eichler David

Abstract

With upcoming (continuum) surveys of high-resolution radio telescopes, detection rates of fast radio bursts (FRBs) might approach 105 per sky per day by future extremely large observatories, such as the possible extension of the Square Kilometer Array (SKA) to a phase-2 array. Depending on the redshift distribution of FRBs and using the repeating FRB121102 as a model, we calculate a detection rate of multiply imaged FRBs with their multiply imaged hosts caused by the distribution of galaxy-cluster-scale gravitational lenses of the order of 10−4 per square degree per year for a minimum total flux of the host of 10 μJy at 1.4 GHz for SKA phase 2. Our comparison of estimated detection rates for quasars (QSOs), supernovae (SNe), gamma ray bursts (GRBs), and FRBs shows that multiple images of FRBs could be more numerous than those of GRBs and SNe and as numerous as multiple images of QSOs. Time delays between the multiple images of an FRB break degeneracies in model-based and model-independent lens reconstructions as other time-varying sources do, yet without a microlensing bias, as FRBs are more point-like and have shorter duration times. We estimate the relative imprecision of FRB time-delay measurements to be 10−10 for time delays on the order of 100 days for galaxy-cluster-scale lenses, yielding more precise (local) lens properties than time delays from the other time-varying sources. Using the lens modelling software Grale, we show the increase in accuracy and precision of the reconstructed scaled surface mass density map of a simulated cluster-scale lens when adding time delays for one set of multiple images to the set of observational constraints.

Funder

Deutsche Forschungsgemeinschaft

Research Foundation - Flanders

Flemish Government – department EWI

Israel - U.S. Binational Science Foundation

Israel Science Foundation

Joan and Robert Arnow Chair of Theoretical Astrophysics

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3