Dissecting bombs and bursts: non-LTE inversions of low-atmosphere reconnection in SST and IRIS observations

Author:

Vissers G. J. M.,de la Cruz Rodríguez J.,Libbrecht T.,Rouppe van der Voort L. H. M.,Scharmer G. B.,Carlsson M.

Abstract

Ellerman bombs and UV bursts are transient brightenings that are ubiquitously observed in the lower atmospheres of active and emerging flux regions. As they are believed to pinpoint sites of magnetic reconnection in reconfiguring fields, understanding their occurrence and detailed evolution may provide useful insight into the overall evolution of active regions. Here we present results from inversions of SST/CRISP and CHROMIS, as well as IRIS data of such transient events. Combining information from the Mg II h & k, Si IV, and Ca II 8542 Å and Ca II H & K lines, we aim to characterise their temperature and velocity stratification, as well as their magnetic field configuration. We find average temperature enhancements of a few thousand kelvin, close to the classical temperature minimum and similar to previous studies, but localised peak temperatures of up to 10 000–15 000 K from Ca II inversions. Including Mg II appears to generally dampen these temperature enhancements to below 8000 K, while Si IV requires temperatures in excess of 10 000 K at low heights, but may also be reproduced with secondary temperature enhancements of 35 000–60 000 K higher up. However, reproducing Si IV comes at the expense of overestimating the Mg II emission. The line-of-sight velocity maps show clear bi-directional jet signatures for some events and strong correlation with substructure in the intensity images in general. Absolute line-of-sight velocities range between 5 and 20 km s−1 on average, with slightly larger velocities towards, rather than away from, the observer. The inverted magnetic field parameters show an enhancement of the horizontal field co-located with the brightenings at heights similar to that of the temperature increase. We are thus able to largely reproduce the observational properties of Ellerman bombs with the UV burst signature (e.g. intensities, profile asymmetries, morphology, and bi-directional jet signatures), with temperature stratifications peaking close to the classical temperature minimum. Correctly modelling the Si IV emission in agreement with all other diagnostics is however an outstanding issue and remains paramount in explaining its apparent coincidence with Hα emission. Fine-tuning the approach (accounting for resolution differences, fitting localised temperature enhancements, and/or performing spatially coupled inversions) is likely necessary in order to obtain better agreement between all considered diagnostics.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3