BGM FASt: Besançon Galaxy Model for big data

Author:

Mor R.ORCID,Robin A. C.,Figueras F.,Antoja T.ORCID

Abstract

Aims. We develop a new theoretical framework to generate Besançon Galaxy Model Fast Approximate Simulations (BGM FASt) to address fundamental questions of the Galactic structure and evolution performing multi-parameter inference. As a first application of our strategy we simultaneously infer the initial-mass function (IMF), the star formation history and the stellar mass density in the solar neighbourhood. Methods. The BGM FASt strategy is based on a reweighing scheme, that uses a specific pre-sampled simulation, and on the assumption that the distribution function of the generated stars in the Galaxy can be described by an analytical expression. To evaluate the performance of our strategy we execute a set of validation tests. Finally, we use BGM FASt together with an approximate Bayesian computation algorithm to obtain the posterior probability distribution function of the inferred parameters, by automatically comparing synthetic versus Tycho-2 colour-magnitude diagrams. Results. The validation tests show a very good agreement between equivalent simulations performed with BGM FASt and the standard BGM code, with BGM FASt being ∼104 times faster. From the analysis of the Tycho-2 data we obtain a thin-disc star formation history decreasing in time and a present rate of 1.2 ± 0.2 M yr−1. The resulting total stellar volume mass density in the solar neighbourhood is 0.051−0.005+0.002 M pc−3 and the local dark matter density is 0.012 ± 0.001 M pc−3. For the composite IMF, we obtain a slope of α2 = 2.1−0.3+0.1 in the mass range between 0.5 M and 1.53 M. The results of the slope at the high-mass range are trustable up to 4 M and highly dependent on the choice of extinction map (obtaining α3 = 2.9−0.2+0.2 and α3 = 3.7−0.2+0.2, respectively, for two different extinction maps). Systematic uncertainties coming from model assumptions are not included. Conclusions. The good performance of BGM FASt demonstrates that it is a very valuable tool to perform multi-parameter inference using Gaia data releases.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Agence Nationale de la Recherche

FP7

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3