The stellar halo in Local Group Hestia simulations

Author:

Khoperskov SergeyORCID,Minchev Ivan,Libeskind Noam,Haywood Misha,Di Matteo Paola,Belokurov Vasily,Steinmetz Matthias,Gomez Facundo A.,Grand Robert J. J.,Hoffman Yehuda,Knebe Alexander,Sorce Jenny G.,Spaare Martin,Tempel Elmo,Vogelsberger Mark

Abstract

Recent progress in understanding the assembly history of the Milky Way (MW) is driven by the tremendous amount of high-quality data delivered byGaia(ESA), revealing a number of substructures potentially linked to several ancient accretion events. In this work we aim to explore the phase-space structure of accreted stars by analysing six M31/MW analogues from the HESTIA suite of cosmological hydrodynamics zoom-in simulations of the Local Group. We find that all HESTIA galaxies experience a few dozen mergers but only between one and four of those have stellar mass ratios > 0.2, relative to the host at the time of the merger. Depending on the halo definition, the most massive merger contributes from 20% to 70% of the total stellar halo mass. Individual merger remnants show diverse density distributions atz = 0, significantly overlapping with each other and with the in situ stars in theLz − E, (VR, Vϕ) and (R, vϕ) coordinates. Moreover, merger debris often shifts position in theLz − Espace with cosmic time due to the galactic mass growth and the non-axisymmetry of the potential. In agreement with previous works, we show that even individual merger debris exhibit a number of distinctLz − Efeatures. In the (VR, Vϕ) plane, all HESTIA galaxies reveal radially hot, non-rotating or weakly counter-rotating, Gaia-Sausage-like features, which are the remnants of the most recent significant mergers. We find an age gradient inLz − Espace for individual debris, where the youngest stars, formed in the inner regions of accreting systems, deposit to the innermost regions of the host galaxies. The bulk of these stars formed during the last stages of accretion, making it possible to use the stellar ages of the remnants to date the merger event. In action space (Jr, Jz, Jϕ), merger debris do not appear as isolated substructures, but are instead scattered over a large parameter area and overlap with the in situ stars. We suggest that accreted stars can be best identified usingJr > 0.2−0.3(104 kpc km s−1)0.5. We also introduce a new, purely kinematic space (Jz/Jr-orbital eccentricity), where different merger debris can be disentangled better from each other and from the in situ stars. Accreted stars have a broad distribution of eccentricities, peaking atϵ ≈ 0.6 − 0.9, and their mean eccentricity tends to be smaller for systems accreted more recently.

Funder

ANID FONDECYT

ANID BASAL

MICINN

ANR

Israel Science Foundation

ETAg

ERDF CoE

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3