Properties of the interstellar medium in star-forming galaxies at redshifts 2 ≤ z ≤ 5 from the VANDELS survey

Author:

Calabrò A.,Pentericci L.ORCID,Talia M.ORCID,Cresci G.ORCID,Castellano M.ORCID,Belfiori D.,Mascia S.ORCID,Zamorani G.ORCID,Amorín R.ORCID,Fynbo J. P. U.,Ginolfi M.,Guaita L.ORCID,Hathi N. P.ORCID,Koekemoer A.ORCID,Llerena M.ORCID,Mannucci F.ORCID,Santini P.ORCID,Saxena A.,Schaerer D.ORCID

Abstract

Gaseous flows inside and outside galaxies are key to understanding galaxy evolution, as they regulate their star formation activity and chemical enrichment across cosmic time. We study the interstellar medium (ISM) kinematics of a sample of 330 galaxies with C III] or He II emission using far-ultraviolet (far-UV) ISM absorption lines detected in the ultra deep spectra of the VANDELS survey. These galaxies span a broad range of stellar masses from 108 to 1011 M, and star formation rates (SFRs) from 1 to 500 M yr−1 in the redshift range between 2 and 5. We find that the bulk ISM velocity along the line of sight (vIS) is globally in outflow, with a vIS of −60 ± 10 km s−1 for low-ionisation gas traced by Si IIλ1260 Å, C IIλ1334 Å, Si IIλ1526 Å, and Al IIλ1670 Å absorption lines, and a vIS of −160 ± 30 and −170 ± 30 km s−1 for higher ionisation gas traced respectively by Al IIIλλ1854-1862 Å and Si IVλλ1393-1402 Å. Interestingly, we notice that BPASS models are able to better reproduce the stellar continuum around the Si IV doublet than other stellar population templates. For individual galaxies, 34% of the sample has a positive ISM velocity shift, almost double the fraction reported at lower redshifts. We additionally derive a maximum outflow velocity vmax for the average population, which is of the order of ∼ − 500 and ∼ − 600 km s−1 for the lower and higher ionisation lines, respectively. Comparing vIS to the host galaxies properties, we find no significant correlations with stellar mass M or SFR, and only a marginally significant dependence (at ∼2σ) on morphology-related parameters, with slightly higher velocities found in galaxies of smaller size (probed by the equivalent radius rT50), higher concentration (CT), and higher SFR surface density ΣSFR. From the spectral stacks, vmax shows a similarly weak dependence on physical properties (at ≃2σ). Moreover, we do not find evidence of enhanced outflow velocities in visually identified mergers compared to isolated galaxies. From a physical point of view, the outflow properties are consistent with accelerating momentum-driven winds, with densities decreasing towards the outskirts. Our moderately lower ISM velocities compared to those found in similar studies at lower redshifts suggest that inflows and internal turbulence might play an increased role at z > 2 and weaken the outflow signatures. Finally, we estimate mass-outflow rates out that are comparable to the SFRs of the galaxies (hence a mass-loading factor η of the order of unity), and an average escape velocity of 625 km s−1, suggesting that most of the ISM will remain bound to the galaxy halo.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3