Ionized gas kinematics and chemical abundances of low-mass star-forming galaxies at z  ∼  3

Author:

Llerena M.ORCID,Amorín R.,Pentericci L.,Calabrò A.,Shapley A. E.,Boutsia K.,Pérez-Montero E.,Vílchez J. M.,Nakajima K.

Abstract

Context. Feedback from massive stars plays a crucial role in regulating the growth of young star-forming galaxies (SFGs) and in shaping their interstellar medium (ISM). This feedback contributes to the removal and mixing of metals via galactic outflows and to the clearance of neutral gas, which facilitates the escape of ionizing photons. Aims. Our goal is to study the impact of stellar feedback on the chemical abundances of the ISM in a sample of SFGs with strong emission lines at z ∼ 3. Methods. We selected 35 low-mass SFGs (7.9 < log(M/M) < 10.3) from deep spectroscopic surveys based on their CIII]λ1908 emission. We used new follow-up near-infrared (NIR) observations to examine their rest-optical emission lines and to identify ionized outflow signatures through broad emission line wings detected after Gaussian modeling of [OIII]λλ4959,5007 profiles. We characterized the gas-phase metallicity and carbon-to-oxygen (C/O) abundance of the galaxies using a Te-based method via the OIII]λ1666/[OIII]λ5007 ratio and photoionization models. Results. We find line ratios and rest-frame equivalent widths (EWs) characteristic of high-ionization conditions powered by massive stars. Our sample displays a mean rest-frame EW([OIII]λ5007) of ∼560 Å, while about 15% of the SFGs show EW([OIII]λλ4959,5007)  >  1000 Å and EW(CIII])  >  5 Å, closely resembling those now seen in epoch of reionization (EoR) galaxies with the James Webb Space Telescope. We find high Te values, which imply low gas-phase metallicities 12+log(O/H) ∼ 7.5–8.5 (mean of 17% solar) and C/O abundances from 23% to 128% solar, with no apparent increasing trend with metallicity. Our sample follows the mass-metallicity relation at z ∼ 3, with some galaxies showing lower gas-phase metallicities. This results in significant deviations from the fundamental metallicity relation. From our [OIII]λλ4959,5007 line profile modeling, we find that 65% of our sample shows an outflow component, which is found both blue- or redshifted relative to the ionized gas systemic velocity, and the mean maximum velocities are vmax ∼ 280 km s−1. We find a weak correlation between vmax and the star formation rate surface density (ΣSFR) of vmax = (2.41 ± 0.03) × ΣSFR(0.06 ± 0.03). Moreover, we find that the mass-loading factor μ of our galaxy sample is typically lower than in more massive galaxies from the literature, but it is higher than in typical local dwarf galaxies. In the stellar mass range covered by our sample, we find that μ increases with ΣSFR. This suggests that for a given stellar mass, denser starbursts in low-mass galaxies produce stronger outflows. Our results complement the picture drawn by similar studies at lower redshift, suggesting that the removal of ionized gas in low-mass SFGs driven by stellar feedback is regulated by their stellar mass and by the strength and concentration of their star formation, that is, ΣSFR.

Funder

National Agency for Research and Development ANID

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3