Predicting binding energies of astrochemically relevant molecules via machine learning

Author:

Villadsen T.,Ligterink N. F. W.,Andersen M.

Abstract

Context. The behaviour of molecules in space is to a large extent governed by where they freeze out or sublimate. The molecular binding energy is therefore an important parameter for many astrochemical studies. This parameter is usually determined with time-consuming experiments, computationally expensive quantum chemical calculations, or the inexpensive yet relatively inaccurate linear addition method. Aims. In this work, we propose a new method for predicting binding energies (BEs) based on machine learning that is accurate, yet computationally inexpensive. Methods. We created a machine-learning (ML) model based on Gaussian process regression (GPR) and trained it on a database of BEs of molecules collected from laboratory experiments presented in the literature. The molecules in the database are categorised by their features, such as mono- or multilayer coverage, binding surface, functional groups, valence electrons, and H-bond acceptors and donors. Results. We assessed the performance of the model with five-fold and leave-one-molecule-out cross validation. Predictions are generally accurate, with differences between predicted binding energies and values from the literature of less than ±20%. We used the validated model to predict the binding energies of 21 molecules that were recently detected in the interstellar medium, but for which binding energy values are unknown. We used a simplified model to visualise where the snow lines of these molecules would be located in a protoplanetary disk. Conclusions. This work demonstrates that ML can be employed to accurately and rapidly predict BEs of molecules. Machine learning complements current laboratory experiments and quantum chemical computational studies. The predicted BEs will find use in the modelling of astrochemical and planet-forming environments.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3