Abstract
Abstract
Recent detections of aromatic species in dark molecular clouds suggest that formation pathways may be efficient at very low temperatures and pressures, yet current astrochemical models are unable to account for their derived abundances, which can often deviate from model predictions by several orders of magnitude. The propargyl radical, a highly abundant species in the dark molecular cloud TMC-1, is an important aromatic precursor in combustion flames and possibly interstellar environments. We performed astrochemical modeling of TMC-1 using the three-phase gas-grain code NAUTILUS and an updated chemical network, focused on refining the chemistry of the propargyl radical and related species. The abundance of the propargyl radical has been increased by half an order of magnitude compared to the previous GOTHAM network. This brings it closer in line with observations, but it remains underestimated by 2 orders of magnitude compared to its observed value. Predicted abundances for the chemically related C4H3N isomers within an order of magnitude of observed values corroborate the high efficiency of CN addition to closed-shell hydrocarbons under dark molecular cloud conditions. The results of our modeling provide insight into the chemical processes of the propargyl radical in dark molecular clouds and highlight the importance of resonance-stabilized radicals in polycyclic aromatic hydrocarbon formation.
Funder
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献