Star-forming early-type galaxies and quiescent late-type galaxies in the local Universe

Author:

Paspaliaris E.-D.ORCID,Xilouris E. M.ORCID,Nersesian A.ORCID,Bianchi S.ORCID,Georgantopoulos I.,Masoura V. A.ORCID,Magdis G. E.ORCID,Plionis M.ORCID

Abstract

Aims. The general consensus is that late-type galaxies undergo intense star-formation, activity while early-type galaxies are mostly inactive. We question this general rule and investigate the existence of star-forming early-type and quiescent late-type galaxies in the local Universe. By computing the physical properties of these galaxies and by using information on their structural properties as well as the density of their local environment, we seek to understand the differences from their ‘typical’ counterparts. Methods. We made use of the multi-wavelength photometric data (from the ultraviolet to the sub-millimetre), for 2209 morphologically classified galaxies in the Galaxy And Mass Assembly survey. Furthermore, we separated the galaxies into subsets of star-forming and quiescent based on their dominant ionising process, making use of established criteria based on the WHα width and the [NII/Hα] ratio. Taking advantage of the spectral energy distribution fitting code CIGALE, we derived galaxy properties, such as the stellar mass, dust mass, and star-formation rate, and we also estimated the unattenuated and the dust-absorbed stellar emission, for both the young (≤200 Myr) and old (> 200 Myr) stellar populations. Results. We find that about 47% of E/S0 galaxies in our sample show ongoing star-formation activity and 8% of late-type galaxies are quiescent. The star-forming elliptical galaxies, together with the little blue spheroids, constitute a population that follows the star-forming main sequence of spiral galaxies very well. The fraction of the luminosity originating from young stars in the star-forming early-type galaxies is quite substantial (∼25%) and similar to that of the star-forming late-type galaxies. The stellar luminosity absorbed by the dust (and used to heat the dust grains) is highest in star-forming E/S0 galaxies (an average of 35%) followed by star-forming Sa-Scd galaxies (27%) with this fraction becoming significantly smaller for their quiescent analogues (6% and 16%, for E/S0 and Sa-Scd, respectively). Star-forming and quiescent E/S0 galaxies donate quite different fractions of their young stellar luminosities to heat up the dust grains (74% and 36%, respectively), while these fractions are very similar for star-forming and quiescent Sa-Scd galaxies (59% and 60%, respectively). Investigating possible differences between star-forming and quiescent galaxies, we find that the intrinsic (unattenuated) shape of the SED of the star-forming galaxies is, on average, very similar for all morphological types. Concerning their structural parameters, quiescent galaxies tend to show larger values of the r-band Sérsic index and larger effective radii (compared to star-forming galaxies). Finally, we find that star-forming galaxies preferably reside in lower density environments compared to the quiescent ones, which exhibit a higher percentage of sources being members of groups.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3