Evolved massive stars at low-metallicity

Author:

Yang Ming,Bonanos Alceste Z.,Jiang Biwei,Zapartas Emmanouil,Gao Jian,Ren Yi,Lam Man I.,Wang Tianding,Maravelias Grigoris,Gavras Panagiotis,Wang Shu,Chen Xiaodian,Tramper Frank,de Wit Stephan,Chen Bingqiu,Wen Jing,Liu Jiaming,Tian Hao,Antoniadis Konstantinos,Luo Changqing

Abstract

The mass-loss rate (MLR) is one of the most important parameters in astrophysics, because it impacts many areas of astronomy, such as ionizing radiation, wind feedback, star-formation rates, initial mass functions, stellar remnants, supernovae, and so on. However, the most important modes of mass loss are also the most uncertain, as the dominant physical mechanisms that lead to this phenomenon are stull largely unknown. Here we assemble the most complete and clean red supergiant (RSG) sample (2121 targets) so far in the Small Magellanic Cloud (SMC) with 53 different bands of data to study the MLR of RSGs. In order to match the observed spectral energy distributions (SEDs), we created a theoretical grid of 17 820 oxygen-rich models (“normal” and “dusty” grids are half-and-half) using the radiatively driven wind model of the DUSTY code, covering a wide range of dust parameters. We select the best model for each target by calculating the minimal modified chi-square and visual inspection. The resulting MLRs from DUSTY are converted to real MLRs based on the scaling relation, for which a total MLR of 6.16 × 10−3M yr−1 is measured (corresponding to a dust-production rate of ∼6 × 10−6M yr−1), with a typical MLR of ∼10−6M yr−1 for the general population of the RSGs. The complexity of mass-loss estimations based on the SED is fully discussed for the first time, and our results indicate large uncertainties based on the photometric data (potentially up to one order of magnitude or more). The Hertzsprung-Russell (HR) and luminosity versus median-absolute-deviation (MAD) diagrams of the sample indicate the positive relation between luminosity and MLR. Meanwhile, the luminosity versus MLR diagrams show a “knee-like” shape with enhanced mass loss occurring above log10(L/L)≈4.6, which may be due to the degeneracy of luminosity, pulsation, low surface gravity, convection, and other factors. We derive our MLR relation using a third-order polynomial to fit the sample and compare our results with previous empirical MLR prescriptions. Given that our MLR prescription is based on a much larger sample than previous determinations, it provides a more accurate relation at the cool and luminous region of the HR diagram at low metallicity compared to previous studies. Finally, nine targets in our sample were detected in the UV, which could be an indicator of OB-type companions of binary RSGs.

Funder

NSFC

ERC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3