A deep learning approach for focal-plane wavefront sensing using vortex phase diversity

Author:

Quesnel M.,Orban de Xivry G.,Louppe G.,Absil O.

Abstract

Context. The performance of high-contrast imaging instruments is limited by wavefront errors, in particular by non-common path aberrations (NCPAs). Focal-plane wavefront sensing (FPWFS) is appropriate to handle NCPAs because it measures the aberration where it matters the most, that is to say at the science focal plane. Phase retrieval from focal-plane images results, nonetheless, in a sign ambiguity for even modes of the pupil-plane phase. Aims. The phase diversity methods currently used to solve the sign ambiguity tend to reduce the science duty cycle, that is, the fraction of observing time dedicated to science. In this work, we explore how we can combine the phase diversity provided by a vortex coronagraph with modern deep learning techniques to perform efficient FPWFS without losing observing time. Methods. We applied the state-of-the-art convolutional neural network EfficientNet-B4 to infer phase aberrations from simulated focal-plane images. The two cases of scalar and vector vortex coronagraphs (SVC and VVC) were considered using a single post-coronagraphic point spread function (PSF) or two PSFs obtained by splitting the circular polarization states, respectively. Results. The sign ambiguity has been properly lifted in both cases even at low signal-to-noise ratios (S/Ns). Using either the SVC or the VVC, we have reached a very similar performance compared to using phase diversity with a defocused PSF, except for high levels of aberrations where the SVC slightly underperforms compared to the other approaches. The models finally show great robustness when trained on data with a wide range of wavefront errors and noise levels. Conclusions. The proposed FPWFS technique provides a 100% science duty cycle for instruments using a vortex coronagraph and does not require any additional hardware in the case of the SVC.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3