Radial velocity follow-up of GJ1132 with HARPS

Author:

Bonfils X.ORCID,Almenara J.-M.,Cloutier R.,Wünsche A.,Astudillo-Defru N.,Berta-Thompson Z.,Bouchy F.,Charbonneau D.,Delfosse X.,Díaz R. F.,Dittmann J.,Doyon R.,Forveille T.,Irwin J.,Lovis C.,Mayor M.,Menou K.,Murgas F.,Newton E.,Pepe F.,Santos N. C.,Udry S.

Abstract

The source GJ1132 is a nearby red dwarf known to host a transiting Earth-size planet. After its initial detection, we pursued an intense follow-up with the HARPS velocimeter. We now confirm the detection of GJ1132b with radial velocities alone. We refined its orbital parameters, and in particular, its mass (mb = 1.66 ± 0.23 M), density (ρb = 6.3 ± 1.3 g cm−3), and eccentricity (eb < 0.22; 95%). We also detected at least one more planet in the system. GJ1132c is a super-Earth with period Pc = 8.93 ± 0.01 days and minimum mass mc sinic = 2.64 ± 0.44 M. Receiving about 1.9 times more flux than Earth in our solar system, its equilibrium temperature is that of a temperate planet (Teq = 230−300 K for albedos A = 0.75 − 0.00), which places GJ1132c near the inner edge of the so-called habitable zone. Despite an a priori favorable orientation for the system, Spitzer observations reject most transit configurations, leaving a posterior probability <1% that GJ1132c transits. GJ1132(d) is a third signal with period Pd = 177 ± 5 days attributed to either a planet candidate with minimum mass md sin id = 8.4−2.5+1.7 M or stellar activity. Its Doppler signal is the most powerful in our HARPS time series but appears on a timescale where either the stellar rotation or a magnetic cycle are viable alternatives to the planet hypothesis. On the one hand, the period is different than that measured for the stellar rotation (~125 days), and a Bayesian statistical analysis we performed with a Markov chain Monte Carlo and Gaussian processes demonstrates that the signal is better described by a Keplerian function than by correlated noise. On the other hand, periodograms of spectral indices sensitive to stellar activity show power excess at similar periods to that of this third signal, and radial velocity shifts induced by stellar activity can also match a Keplerian function. We, therefore, prefer to leave the status of GJ1132(d) undecided.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The ℛ project;Astronomy & Astrophysics;2024-09

2. Radial velocity homogeneous analysis of M dwarfs observed with HARPS;Astronomy & Astrophysics;2024-08-30

3. Teegarden’s Star revisited;Astronomy & Astrophysics;2024-04

4. The Initial Mass Function Based on the Full-sky 20 pc Census of ∼3600 Stars and Brown Dwarfs;The Astrophysical Journal Supplement Series;2024-04-01

5. Double Trouble: Two Transits of the Super-Earth GJ 1132 b Observed with JWST NIRSpec G395H;The Astrophysical Journal Letters;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3