Interior structure models and fluid Love numbers of exoplanets in the super-Earth regime

Author:

Kellermann C.,Becker A.,Redmer R.

Abstract

Space missions such as CoRoT and Kepler have made the transit method the most successful technique in observing extrasolar planets. However, although the mean density of a planet can be derived from its measured mass and radius, no details about its interior structure, such as the density profile, can be inferred so far. If determined precisely enough, the shape of the transiting light curve might, in principle, reveal the shape of the planet, and in particular, its deviation from spherical symmetry. These deformations are caused, for instance, by the tidal interactions of the planet with the host star and by other planets that might orbit in the planetary system. The deformations depend on the interior structure of the planet and its composition and can be parameterized as Love numbers kn. This means that the diversity of possible interior models for extrasolar planets might be confined by measuring this quantity. We present results of a wide-ranging parameter study in planet mass, surface temperature, and layer mass fractions on such models for super-Earths and their corresponding Love numbers. Based on these data, we find that k2 is most useful in assessing the ratio of rocky material to iron and in ruling out certain compositional configurations for measured mass and radius values, such as a prominent core consisting of rocky material. Furthermore, we apply the procedure to exoplanets K2-3b and c and predict that K2-3c probably has a thick outer water layer.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3