Machine-learning Inferences of the Interior Structure of Rocky Exoplanets from Bulk Observational Constraints

Author:

Zhao YongORCID,Ni DongdongORCID,Liu Zibo

Abstract

Abstract Characterizing the interiors of rocky exoplanets is important to understand planetary populations and further investigate planetary habitability. New observable constraints and inference techniques have been explored for this purpose. In this work, we design and train mixture density networks (MDNs) to predict the interior properties of rocky exoplanets with large compositional diversity. In addition to measurements of mass and radius, bulk refractory elemental abundance ratios and the static Love number k 2 are used to constrain the interior of rocky exoplanets. It is found that the MDNs are able to infer the interior properties of rocky exoplanets from the available measurements of exoplanets. Compared with powerful inversion methods based on Bayesian inference, the trained MDNs provide a more rapid characterization of planetary interiors for each individual planet. The MDN model offers a convenient and practical tool for probabilistic inferences of planetary interiors.

Funder

MOST ∣ National Natural Science Foundation of China

Science and Technology Development Fund, Macau SAR

Pre-Research Projects on Civil Aerospace Technologies of China National Space Administration

Macau University of Science and Technology Faculty Research Grants

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3