S–PASS view of polarized Galactic synchrotron at 2.3 GHz as a contaminant to CMB observations

Author:

Krachmalnicoff N.,Carretti E.,Baccigalupi C.,Bernardi G.,Brown S.,Gaensler B. M.,Haverkorn M.,Kesteven M.,Perrotta F.,Poppi S.,Staveley-Smith L.

Abstract

We have analyzed the southern sky emission in linear polarization at 2.3 GHz as observed by the S -band Polarization All Sky Survey (S-PASS). Our purpose is to study the properties of the diffuse Galactic polarized synchrotron as a contaminant to B-mode observations of the cosmic microwave background (CMB) polarization. We studied the angular distribution of the S-PASS signal at intermediate and high Galactic latitudes by means of the polarization angular power spectra. The power spectra, computed in the multipole interval 20 ≤ ≤ 1000, show a decay of the spectral amplitude as a function of multipole for ≲ 200, typical of the diffuse emission. At smaller angular scales, power spectra are dominated by the radio point source radiation. We find that, at low multipoles, spectra can be approximated by a power law CEE,BB ∝ ℓα, with α ≃ −3, and characterized by a B-to-E ratio of about 0.5. We measured the polarized synchrotron spectral energy distribution (SED) in harmonic space, by combining S-PASS power spectra with low frequency WMAP and Planck ones, and by fitting their frequency dependence in six multipole bins, in the range 20 ≤ ≤ 140. Results show that the recovered SED, in the frequency range 2.3–33 GHz, is compatible with a power law with βs = −3.22 ± 0.08, which appears to be constant over the considered multipole range and in the different Galactic cuts. Combining the S-PASS total polarized intensity maps with those coming from WMAP and Planck we derived a map of the synchrotron spectral index βs at angular resolution of 2° on about 30% of the sky. The recovered βs distribution peaks at the value around −3.2. It exibits an angular power spectrum which can be approximated with a power law Cγ with γ ≃ −2.6. We also measured a significant spatial correlation between synchrotron and thermal dust signals, as traced by the Planck 353 GHz channel. This correlation reaches about 40% on the larger angular scales, decaying considerably at the degree scales. Finally, we used the S-PASS maps to assess the polarized synchrotron contamination to CMB observations of the B-modes at higher frequencies. We divided the sky in small patches (with fsky ≃ 1%) and find that, at 90 GHz, the minimal contamination, in the cleanest regions of the sky, is at the level of an equivalent tensor-to-scalar ratio rsynch ≃ 10−3. Moreover, by combining S-PASS data with Planck 353 GHz observations, we recover a map of the minimum level of total polarized foreground contamination to B-modes, finding that there is no region of the sky, at any frequency, where this contamination lies below equivalent tenor-to-scalar ratio rFG ≃ 10−3. This result confirms the importance of observing both high and low frequency foregrounds in CMB B-mode measurements.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3