Formation of S0 galaxies through mergers

Author:

Eliche-Moral M. C.ORCID,Rodríguez-Pérez C.,Borlaff A.,Querejeta M.,Tapia T.

Abstract

Context. Major mergers are popularly considered too destructive to produce the relaxed regular structures and the morphological inner components (ICs) usually observed in lenticular (S0) galaxies.Aims. We aim to test if major mergers can produce remnants with realistic S0 morphologies.Methods. We have selected a sample of relaxed discy remnants resulting from the dissipative merger simulations of the GalMer database and derived their properties mimicking the typical conditions of current observational data. We have compared their global morphologies, visual components, and merger relics in mock photometric images with their real counterparts.Results. Only Ȉ1–2 Gyr after the full merger, we find that: 1) many remnants (67 major and 29 minor events) present relaxed structures and typical S0 or E/S0 morphologies, for a wide variety of orbits and even in gas-poor cases. 2) Contrary to popular expectations, most of them do not exhibit any morphological traces of their past merger origin under typical observing conditions and at distances as nearby as 30 Mpc. 3) The merger relics are more persistent in minor mergers than in major ones for similar relaxing time periods. 4) No major-merger S0-like remnant develops a significant bar. 5) Nearly 58% of the major-merger S0 remnants host visually detectable ICs, such as embedded inner discs, rings, pseudo-rings, inner spirals, nuclear bars, and compact sources, very frequent in real S0s too. 6) All remnants contain a lens or oval, identically ubiquitous in local S0s. 7) These lenses and ovals do not come from bar dilution in major-merger cases, but are associated with stellar halos or embedded inner discs instead (thick or thin).Conclusions. The relaxed morphologies, lenses, ovals, and other ICs of real S0s do not necessarily come from internal secular evolution, gas infall, or environmental mechanisms, as traditionally assumed, but they can result from major mergers as well.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Imaging and Spectroscopic Exploration of the Dusty Compact Obscured Nucleus Galaxy Zw 049.057*;The Astrophysical Journal Supplement Series;2024-08-12

2. Assessment of SDSS-derived Galaxy Morphologies Using HST Imaging;The Astrophysical Journal;2024-04-01

3. The local Universe in the era of large surveys – III. Radial activity profiles of S0 galaxies;Monthly Notices of the Royal Astronomical Society;2024-01-10

4. The fragility of thin discs in galaxies – II. Thin discs as tracers of the assembly history of galaxies;Monthly Notices of the Royal Astronomical Society;2023-05-25

5. The redshift evolution of the S0 fraction for z < 1 in COSMOS;Monthly Notices of the Royal Astronomical Society;2023-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3