C+ distribution around S 1 in ρ Ophiuchi

Author:

Mookerjea B.,Sandell G.,Vacca W.,Chambers E.,Güsten R.

Abstract

We analyze a [C II] 158 μm map obtained with the L2 GREAT receiver on SOFIA of the reflection nebula illuminated by the early B star S 1 in the ρ Oph A cloud core. This data set has been complemented with maps of CO(3–2), 13CO(3–2), and C18O(3–2), observed as a part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey, with archival HCO+(4–3) JCMT data, as well as with [O I] 63 and 145 μm imaging with Herschel/PACS. The [C II] emission is completely dominated by the strong emission from the photon dominated region (PDR) in the nebula surrounding S 1 expanding into the dense Oph A molecular cloud west and south of S 1. The [C II] emission is significantly blueshifted relative to the CO spectra and also relative to the systemic velocity, particularly in the northwestern part of the nebula. The [C II] lines are broader toward the center of the S 1 nebula and narrower toward the PDR shell. The [C II] lines are strongly self-absorbed over an extended region in the S 1 PDR. Based on the strength of the [13C II] F = 2–1 hyperfine component, [C II] is significantly optically thick over most of the nebula. CO and 13CO(3–2) spectra are strongly self-absorbed, while C18O(3–2) is single peaked and centered in the middle of the self-absorption. We have used a simple two-layer LTE model to characterize the background and foreground cloud contributing to the [C II] emission. From this analysis we estimated the extinction due to the foreground cloud to be ~9.9 mag, which is slightly less than the reddening estimated toward S 1. Since some of the hot gas in the PDR is not traced by low-J CO emission, this result appears quite plausible. Using a plane parallel PDR model with the observed [O I](145)/[C II] brightness ratio and an estimated FUV intensity of 3100–5000 G0 suggests that the density of the [C II] emitting gas is ~3–4  × 103 cm−3.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3